CET(PG) - 2018

Sr. No. 110013

Booklet Series Code : A

	ise consult your Admit Card / R wer Sheet.	oll No. Slip before filling your Roll Number on the Test Booklet and
Roll No.	(In Figures)	(In Words)
O.M.R. Ansv Signature of the		

Subject : M.Sc. Industrial Chemistry

Time : 90 minutes] [Maximum Marks : 75 Number of Questions : 75] [Total No. of Printed Pages : 16

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS:

- Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point / Black Gel Pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. To open the Question Booklet remove the paper seal gently when asked to do so.
- Please check that this Question Booklet contains 75 questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of test.
- Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point / Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
- Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- 11. For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used.
- 12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- 13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so, would be expelled from the examination.
- 15. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculator is not allowed.

1.	An electric dipole with dipole	e moment is p, is placed in electric field E. The torque
	experienced by dipole is :	
	(A) p×E	ed Alid IA (C) (B) -p×E
	(C) p.E	(D) -p.E
2.	The magnetic flux linked with	a coil is given by the equation $\phi(t) = 3t^2 + 4t + 9$ Wb. The
	magnitude of induced emf at t	= 2 sec is :
	(A) 16 V	(B) 9 V
	(C) 4 V	(D) 1 V
3.	The magnetic field at the centre	of a current carrying loop having radius 'r' is proportional
	to:-	
	(A) r	(B) 1/r
	(C) r ²	(D) 1/t ²
4.	In a Compton scattering exper	iment, the maximum shift in wavelength is :
	(A) h/mc	(B) 2h/mc
	(C) h/2mc	(Ď) 4h/mc
5.	Surface energy term in semi em	pirical mass formula for liquid drop model is proportional
	to what power of 'A', where A i	s atomic mass ?
	(A) 1/3	(B) −1/3
	(C) 2/3	(D) -2/3
6.	Conductivity of a semiconductor	or:
	(A) Increases with rise in tempe	rature
	(B) Decreases with rise in temporal	erature
	(C) Remains constant	
	(D) First increases and then deci	reases with increase in temperature
CNI	W 2402 A	3 FTurn over

9,	A prism splits a beam of	white light into its seven o	onstituent colours, b	ecause :
	(A) Phase of different col	our is different		
	(B) Amplitude of differer	nt colour is different		
	(C) Velocity of different of	colour is different		
	(D) Energy of different co	blour is different		
10.	An a.c. circuit contains 4	ohm resistance in series	with an inductance	coil of reactance
	3 ohm. The impedance of	the circuit is :		
	(A) 7 ohm	(B)	5 ohm	
	(C) 1 ohm	(D)	4/3 ohm	
11.	In Hartley oscillator, the	phase change of 180° is in	troduced by transfo	rmer. The phase
	shift introduced by the tr	ansistor is :		
	(A) 90°	(B)	270°	
	(C) 360°	(D)	180°	
12.	The relation between Boy	le temperature and tempe	rature of inversion i	s:
	(A) $2T_i = T_b$	(B)	$T_i = 2T_b$	
	(C) $T_i = T_b$	(D)	$5T_i = T_b$	
CNV	V-2493-A	4 (*)		
		100.5		

(B) 0°C

(B) Halved

(D) Quadrupled

In Young's double slit experiment, the separation between the slits is halved and the

distance between the slits and the screen is doubled. The fringe width is :

(D) At high temperature

An intrinsic semiconductor is an insulator at:

(A) 0 K

(A) Unchanged

(C) Doubled

(C) At room temperature

13. In Bose-Einstein Condensates, the particles :

- (A) Have strong interparticle attraction
- (B) Condense in real space
- (C) Have overlapping wave functions
- (D) Have large and positive chemical potential

14. In the following circuit, the voltage across and the current through the 2 k Ω resistance

- (A) 20 V, 10 mA
- (C) 10 V, 10 mA

- (B) 20 V, 5 mA
- (D) 10 V, 5 mA

Match the typical spectroscopic regions specified in Group I with the corresponding type of transitions in Group II.

Group I

- (P) Infra-red region
- (Q) Ultraviolet-visible region
- (R) X-ray region
- (S) γ-ray region
- (A) (P, i); (Q, iii); (R, ii); (S, iv)
- (C) (P, iii); (Q, i); (R, iv); (S, ii)

Group II

- (i) Electronic transitions involving valence electrons
- (ii) Nuclear transitions
- (iii) Vibrational transitions of molecules
- (iv) Transitions involving inner shell electrons
- (B) (P, ii); (Q, iv); (R, i); (S, iii)
- (D) (P, iv); (Q, i); (R, ii); (S, iii)

16.	Helium atom in a singlet state is called :	
	(A) Ortho-helium	(B) Para-helium
	(C) Ionised helium	(D) Inert gas component
17.	Lyman series of hydrogen spectrum lies in	the:
	(A) Visible region	(B) Infrared region
	(C) Far infrared region	(D) Ultraviolet region
18.	The acceleration due to gravity (g) on the su	rface of Earth is approximately 2.6 times that
	on the surface of Mars. Given that the rac	dius of Mars is about one half the radius of
	Earth, the ratio of the escape velocity on Ea	arth to that on Mars is approximately :
	(A) 1.1	(B) 1.3
	(C) 2.3	(D) 5.2
19.	The speed of a planet is minimum when it i	s:
	(A) Nearest to sun	(B) Farthest from sun
	(C) In between nearest and farthest point	(D) Having solar eclipse
20.	Unit of Poynting vector :	
20.	(A) W/m ²	(B) J/m ²
	(C) N/m ²	(D) W/sm ²
21.	The slope of straight line plot of log K vers	
	(A) -Ea(2.303 R)	(B) –Ea
	(C) Ea	(D) None of these
22.	Among the following species, which has the	e minimum bond length ?
	(A) B ₂	(B) C ₂
	(C) F ₂	(D) O ₁
CN	W-2493-A	6

23.	Which metal loses its meniscus after	r reaction with	ozone ?	
	(A) Ag	(B)	Hg	
	(C) Pb	- (D)	Cu	
24.	Ascorbic acid is :			
	(A) Protein	(B)	Vitamin	
	(C) Carbohydrate	(D)	Enzyme	
25.	Orlon is the polymer of :			
	(A) Acrylonitrile	(B)	Vinyl chloride	
	(C) Styrene	(D)	None	
26.	Which of the following diatomic n	nolecules would	be stabilized by the	removal of an
	electron ?		(01.1 = 81 gol	
	(A) C ₂	(B)	CN	
	(C) N ₂	(D)	O ₂	
27.	The correct arrangement of NH, N	H, NH,OH an	d CH ₃ NH ₂ in the ord	er of increasing
	base strength is :			
	(A) NH ₃ <n<sub>2H₄<nh<sub>2OH<ch<sub>3NH₂</ch<sub></nh<sub></n<sub>	(B)	NH ₂ OH <n<sub>2H₄<nh<sub>3<</nh<sub></n<sub>	CH ₃ NH ₂
	(C) CH ₃ NH ₂ <nh<sub>3<n<sub>2H₄<nh<sub>2OH</nh<sub></n<sub></nh<sub>	(D)	N ₂ H ₄ <nh<sub>2OH<ch<sub>2N</ch<sub></nh<sub>	H ₂ <nh<sub>3</nh<sub>
28.	If you heat a 5 L balloon from a ten	perature of 25°	C to 50°C, its new vo	lume will be :
	(A) 10 L	(B)	2.5 L	
	(C) 5.42 L	(D)	4.61 L	
29.	The strongest acid is :			
	(A) CH,FCOOH	(B)	СН,СІСООН	
	(C) CHCI,COOH		CHF,COOH	
CNV	V-2493-A	7 (*)	Acres Acres and	[Turn over

30.	The gas used in gas thermometer	is:
	(A) He	(B) O ₂
	(C) Xe	(D) Ne
31.	Tails of comets are visible due to	the first of the party of the p
	(A) Tyndall Effect	(B) Reflection
	(C) Brownian Motion	(D) Refraction
32.	Calculate molarity of CaCO, aq.	Solution which has concentration of CaCO ₃ = 200 ppm :
	(A) 1×10 ⁻³ M	(B) 2×10 ⁻³ M
	(C) 4×10 ⁻³ M	(D) 0.5×10 ⁻³ M
33.	50 ml of 0.2 M KOH is added to 4	0 ml of 0.5 M HCOOH. The pH of the resulting solution
	is (Ka = 1.8×10^{-4} and log $18 = 1.2$	
	(A) 3.74	(B) 5.64
	(C) 7.57	(D) 3.42
34.	Which reactant is more effective	to convert but-2-enal to but-2-enol ?
	(A) K ₂ Cr ₂ O ₇ /H ₂ SO ₄	(B) KMnO ₄
	(C) H ₂ /Pt	(D) NaBH ₄
35.	Highest boiling point is expected	for:
	(A) Iso octane	(B) n-Octane
	(C) 2,2,3,3-tetramethyl butane	(D) n-butane
36.	Among TiF ₆ ²⁻ , CoF ₆ ³⁻ , Cu ₂ Cl ₂ and	l NiCl ₄ ²⁻ , the colourless species are :
	(A) CoF ₆ ³⁻ and NiCl ₄ ²⁻	(B) TiF ₆ ²⁻ and CoF ₆ ³⁻
	(C) Cu ₂ Cl ₂ and NiCl ₄ ²⁻	(D) TiF ₆ ²⁻ and Cu ₂ Cl ₂
	HO.	80,4H2 (G) 1000,010
CN	W-2493-A	(*)