Question Booklet Series: A

Question Booklet Serial No. 110049

CET (PG) - 2017

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	In Figure	In Words	
O.M.R.	Answer Sheet Serial No.		7 m l m m
Signature of Candidate.		Signature of Invigilator:	

Subject: M.E. Electrical Engineering (Power System)

Time: 90 Minutes

Number of Questions: 75

Maximum Marks: 75

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO.

INSTRUCTIONS:

1. Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.

Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.

Do not make any identification mark on the Answer Sheet or Question Booklet.

4. Please check that this Question Booklet contains 75 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.

5. Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be negative marking for wrong answer, 1/4 of the marks of the question will be deducted for every wrong answer.

6. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.

7. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the 8. If you want to change an already marked answer, erase the shade in the darkened bubble completely.

For rough work only the blank sheet at the end of the Question Booklet be used.

10. The University will provide Logarithmic table. Borrowing of log table or other material is not allowed.

11. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.

12. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on

- 13. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from
- 14. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 15. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination half. Use of calculators is not
- 16. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

1.	 Each strand, in 19-strand conductor is of equal diameter and has an inductance of I. I The total inductance of stranded conductor is 					
	A) 19L	B) L/19	C) L/36 1	D) L/36		
2.	The effect of ear	th on capacitance of a li	ne can be neglected wi	hen		
	B) Bundled con		MT	ground ared to spacing between		
	D) Spacing betw	veen conductors is more	than Height of conduc	tor above ground		
3.	The stipulated ve	oltage regulation of a tra	insmission line is			
	A) ±5 %	B) ± 10%	C) ± 7.5 %	D) ±4.5 %		
4.		e phase transmission omH. The magnitude of		capacitance 0.015 µF and ance of line is		
	Α) 350 Ω	Β) 400 Ω	C) 500 Ω	D) 450 Ω		
5.	Which of the fol	lowing represents B par	ameter for a long line?	ii		
	A) Cosh (γI)	B) $Z_c \sinh (\gamma I)$	C) sinh (yl)/Z _c	D) $Z_c \cosh(\gamma l)$		
6.	The control error of tie line bias control in a two-area system is					
	A) $ACE_1 = \Delta P_{1-2}$	67	$B)ACE_1{=}B_1\Delta f_1$			
	C) $ACE_1=B_1\Delta f_1$	$+\Delta P_{1-2}$	D) $ACE_1=B_1\Delta f_1$ -	ΔP_{1-2}		
7.	The zero sequen	ce network of a generate	or can be given as			
	A) 3 Z _n -Z ₀	B) 3 Z _n +Z ₀	C) Z _n -3Z ₀	D) $Z_0 + 3Z_0$		
8.		of fault when the boun $I_a=0$ and $V_b-V_{c-}0$?	dary conditions for a	fault on phase 'a' of power		
	А) 3-Ф	B) L-G	C) L-L	D) L-L-G		
9.	Transient stabilit	y analysis is performed	for			
	A) 3-Φ	B) L-G	C) L-L	D) L-L-G		
10	. The percentage b	oias setting of differentia	al relay used for transfe	ormer protection should be		
	A) Below 10% C) Above 50%		B) Between 10% D) Between 30%			

11. A line-to-ground to on delta side as	ault occurs on star side	of a feeder transform	er, the same fault appears	
A) A line to groun	nd fault	B) A line-line grou	ind	
C) A double line to ground fault		D) A three phase for		
12. The digital/numer	ical bus protection scher	me operates within		
A) 1-3 cycles	B) 10-20 cycles	C) 30-40 cycles	D) 8-15 cycles	
13. The effect of CT s	aturation can be reduced	d by		
A) Decreasing cro C) Changing CT	oss section of CT core ratio	B) Increasing cross section of CT core D) Using identical CT's		
14. CVT's are preferre	ed for voltages			
A) Below 11 kV		B) Between 11 kV	and 66 kV	
C) Beyond 132 kV	7	D) None of above		
15. The maximum cur	rent value of lightning	stroke is		
A) 10 A	B) 100 A	C) 10 kA to 100 k.	A D) 1000 kA	
16. The tendency of r case of	nal operation of distance	e relay during power	swing condition is less in	
A) Reactance rela	y	B) Quadrilateral re	day	
C) Mho relay		D) Plain impedance	e relay	
17. The wave length of	of a wave with propagati	ion constant $(0.1\pi + j0.$	2π) m ⁻¹ is	
A) 5 m	B) 15 m	C) 20 m	D) 10 m	
18. A 100 KVA, 400 state short circuit		insformer with 10% i	impedance draws a steady	
A) 50 A	B) 150 A	C) 250 A	D) 350 A	
19. A surge voltage transmission line. open end, will be	It takes 10 μ sec to re	sec travels along a ach the open end. Th	loss-less open circuited e reflected wave from the	
A) 100 kV/μs	B) 200 kV/μs	C) 1000 kV/μs	D) 2000 kV/μs	
20. An electric moto electric input pow		al power of 20 hp	with 88% efficiency. The	
A) 17.89 kW	B) 16.95 kW	C) 18 kW	D) 15.5 kW	

	ected to a network, at 40 V. The maximum po		h load is connected, R _{DI} =10 s		
A) 160 W	B) 80 W	C) 40 W	D) I W		
	e between any two co tance per phase will be		able with sheath earthed is 3		
Α) 1.5 μF	Β) 6 μF	C) 1 µF	D) 2 μF		
23. The Z-transform	m of signal is given by	$\frac{x^{-1}(1-x^{-4})}{4(1-x^{-1})^2}$. Its final val	ue is		
A) 1/4	B) 0	C) ∞	D) 1.0		
24. The gain margi	in of the transfer function	on $G(s) = \frac{0.75s}{(1+s)(2+s)}$ is			
A) 4 dB	B) 8 dB	C) 12 dB	D) 16 dB		
THE RESERVE OF THE PROPERTY OF THE PARTY OF	se from sending end t voltage is 220 kV is	o receiving end for a	50 Hz, 300 km long line if		
A) Voltage rise	e= 5346 V /phase	B) Voltage rise	B) Voltage rise= 7654 V /phase		
C) Voltage ris	e= 5689 V /phase	D) Voltage rise= 6268 V /phase			
	on constant of a 3-phas 94)* 10 ⁻³ Siemens is	e, 200 km long H.V.	line has Z=14.1+j 51.48 ohm		
A) (0.16826+j 1.25) * 10 ⁻³ B) (0.124+j 1.67)* 10 ⁻⁴			7)* 10-4		
C) (0.165+j 1.75)* 10 ⁻⁴		D) (0.134+j 1.8	7)* 10 ⁻⁴		
	station has a peak load r loss is 220 kW. The l		al annual energy of 107 kWh.		
A) 0.215	B) 0.285	C) 0.325	D) 0.356		
	inding of DC machine Y _b Back pitch; Y _c -con	A STATE OF THE PARTY OF THE PAR	ing relation is correct where		
A) Y _b + Y _a = Y	(e	B) $Y_b + Y_a = 2Y$	e e		
C) Y _b - Y _a = Y _c	Name of the last	D) $Y_h - Y_a = Y_c$			
A STATE OF THE PARTY OF THE PAR	se induction motor ope t, the voltage must be n		, if slip is to be doubled for a		
A) $\frac{1}{\sqrt{2}}$	B) √2	C) 1/4	D) 1/6		
		(3)			

	B) 3 times the su C) 6 times the su	pply frequency for fir- pply frequency for fir- pply frequency for fir- pply frequency for fir-	ing angle $\alpha > 60^{\circ}$ ing angle $\alpha = 60^{\circ}$	
	31. A step-up choppe chopper is given		tage and a as duty cycl	e. The output voltage of the
	A) $V_x(1+\alpha)$	B) $V_s/(1+\alpha)$	C) V _s (1-a)	D) V ₀ /(1+a)
		modulation of PWM dc, the rms value of o		ridth is 120°. For an inpu
	A) 179.63 V	B) 254.04 V	C) 127.02 V	D) 185.04 V
	A) Purely resistiv B) Purely induct C) Complex with D) Complex with 34. A 200/100 V, 50	ive i capacitive component i inductive component Hz transformer is to	ıtı .	from 100 V side. For the
	A) 150 V	B) 125 V	C) 100 V	D) 80 V
			chronous generator, ar sted voltage will change	nd the number of field and e by a factor of
(A) 1	B) 2	C) 8	D) 4
			nation ratio of 0.8 sup primary to the seconda	plies a load of 10 kW. The
	A) 10 Kw	B) 8 kW	C) 2 kW	D) Zero
	37. The transistors ar	e		
	A) High voltage	devices	B) Low current of	levice
	C) Low voltage of	levices	D) Low voltage	and low current devices
	current into pure	mary CT has a secon ly resistive burden of nder the given operati	1 ohm. The magnetizing	The secondary supplies 5 A ng ampere turns is 200. The
	A) 0	B) 45 μ Wb	C) 22.5 mW	D) 100 mWb
			(4)	

30. In a 3-phase semiconverter, the frequency of ripple in the output may be

39. A 100 mV at 75	MHz is to be measured. W	Which of the following in	strument can be used?
A) VTVM C) Moving iron voltmeter		B) Cathode ray oscille D) Digital multimeter	Control Princer
40. Shering bridge m	easures		
A) Capacitance, dielectric loss C) Resistance		B) Inductance D) Mutual inductance	
41. The incremental	fuel cost for two generation	ng units given by	
IC ₁ =25+0.2 PG ₁ IC ₂ =32+0.2 PG ₂			
The economic al	location for a total load	of 250 MW, neglecting	transmission losses is
A) PG ₁ =140.25	MW; PG ₂ =109.75 MW /; PG ₂ =125 MW	B) PG ₁ =109.75 MW; D) PG ₁ =100 MW; PC	
42. The spectral dens	sity of a real valued rando	om process has	
An even sym C) A conjugate:		B) An odd symmetry D) No symmetry	
43. The probability of	lensity function of the env	velope of narrow Gaussi	an noise in
A) Poisson	B) Gaussian	C) Rayleigh	D) Rician
44. The Nyquist sam (100t) is	apling frequency in Hz of	a signal given by 6*104	sin c ² (400 t)* 10 ⁶ sin c ³
A) 200	B) 300	C) 500	D) 1000
45. The region of co	nvergence of Z-transform	of a unit step function i	s
A) Z >1	B) Z <1	C) (Real part of z)>0	D) (Real part of z)<0
46. The number of h in an 8085 micro	ardware interrupts (which oprocessor is	n require an external sign	nal to interrupt) present
A) 1	B) 4	C) 5	D) 13
47. The 2's complete	nent representation of -17	is	
A) 01110	B) 01111	C) 11110	D) 10001
48. The number of c	omparators required in a	3-bit comparator type A	DC is
A) 2	B) 3	C) 7	D) 8

49. A 0 to 6 counter co	A PARKET AND A PROPERTY OF A SECURITY OF THE PARKET OF THE	and a combination circu	nit of 2 input gate (s). The
A) One AND gate		B) One OR gate	
C) One AND gate	and OR gate	D) Two AND gates	
	version time for an ana		nas a full scale reading of usec. The conversion time
A) 10 μsec	B) 20 μsec	C) 40 μsec	D) 50 μsec
51. The transfer function		LC circuit is given by	$H(s) = \frac{10^6}{s^2 + 20s + 10^6}$. The
A) 25	B) 100	C) 5000	D) 50
52. The unit impulse re the same system fo		given as c (t)= $-4e^{-4}+6$	se ^{-2t} . The step response of
A) -3e ⁻²¹ -4e ⁻⁴	B)-3e ^{-2t} +4e ⁻⁴ +1	C) 3e ⁻²¹ -4e ⁻⁴ +1	D) 3e ^{-2t} + 4e ^{-t} -1
53. An ideal voltage so	urce will charge an ide	eal capacitor	
A) Infinite time C) Instantaneously		B) Exponentially D) None of the abo	ve
54. A transmission line	e is distortion less if		
A) RL=(1/GC)	B) RL=GC	C) LG=RC	D) RG=LC
55. The Maxwell equat	ion $v \cdot H = J + \frac{\partial D}{\partial t}$ is	based on	
A) Ampere's law	B) Gauss 's law	C) Faraday's law	D) Coulomb's
56. In a uniform electri	e field, fields, lines, lin	nes and equipotentials	
A) Are parallel to one another C) Intersect at 30 ⁰		B) Intersect at 45 ^o D) Are orthogonal	
57. Negative feedback	is an amplifier		
A) Reduce gain		B) Increase frequen	cy and phase distortion
C) Reduce bandwi	dth	D) Increases noise	
58. N-type silicon is ob	tained by doping silic	on with	

C) Boron

D) Phosphorous

B) Aluminium

A) Germanium

59. The Z-matrix of	a 2-port network as ga	iven by $\begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$. The element Y_{22} of the	
corresponding Y r	natrix of the same netw	ork is given by		
A) 1.2	B) 0.4	C) -0.4	D) 1.8	
$2s^8 + s^2 + 3s^3 + 5s$	s equation of a feedback + 10 = 0 ots in the right half s pla			
A) Zero	B) 1	C) 2	D) 3	
61. Maximum phase-l	ead of the compensator	$D(s) = \frac{(0.5s + 1)}{(0.05s + 1)}$ is		
A) 520 at 4 rad/sec		B) 520 at 10 rad/se	e	
C) 55° at 5.76 rad/	sec	D) 55° at 6.32 rad/	sec	
		[2] - [2] -	agging and 96% efficiency ss in kW under full load	
A) P _i =8.51 , P _c =4 C) P _i =4.21 , P _c =8		B) P _i =6.59 , P _c =9.2 D) P _i =3.07 , P _c =12		
63. In a transformer, z	ero voltage regulation a	nt full load is		
A) Not possible C) Possible at leading power factor load			B) Possible at unity power factor load D) Possible at lagging power factor	
	4 pole, 50 Hz, Star con of the machine at full le		or has full load slip of 4%.	
A) 1.66 Nm	B) 99.47 Nm	C) 95.50 Nm	D) 624. 73 Nm	
	e resultant current in a ing current of peak valu		a dc current of 10 A and	
A) 14.1 A	B) 22.4 A	C) 17.3 A	D) 30 A	
66. The maximum pro	entage quantization erro	or for a 12-bit analog	to digital converter is	
A) ±0.00076%	B) ±0.012207%	C) ±3.125%	D) ±4.17%	
	nary current transformers at 5 VA. The seconds		rrent relay set at 25%pick	
A) 1 V	B) 1.25 V	C) 2.5 V	D) 4 V	

68. The	gain bandwidth	product of two st	age CE amplifier is		
A)	Same as that of c	one stage			
B)	Greater than one stage				
C)	Less than one sta	ige			
D)	Product of two g	ain bandwidth pr	oducts of each stage		
69. Wh	en electromagnet	tic waves are proj	pagated in a waveguide		
A)	They are reflecte	d from the walls	but do not travel along	them	
B)	They travel along	g broader walls o	f guide		
(C)	They travel through	igh the dielectric	without touching the w	valls	
D)	They travel along	g all four walls o	f the waveguide		
70. The	wave length of	a wave with prop	agation constant (0.1π+	/0.2n) m ⁻¹ is	
A)	5 m	B) 10 m	C) 15 m	D) 20 m	
		eter is used to	measure a resistance	on 150 V scale. The meter	
resi	istance is				
A)	$150 \text{ k}\Omega$	B) 1 kΩ	C) 6.67 Ω	D) 0.001 Ω	
			ing on 230 V and 5 tions is 400. The power	A for 5 hours makes 1940 factor of load is	
(A)	1	B) 0.8	C) 0.7	D) 0.6	
73. Wh	nich of the follow	ing can be used to	o change data from spe-	cial code for temporal code?	
(A)	Shift registers		B) Counters		
(C)	A/D converters		D) Combination	nal circuits	
74. In t	ime division mul	tiplexing			
A)	Time is doubled	between bits of a	byte		
B)	Time slicing at C	PU level takes p	lace		
C)	Total time avail allotted a time sl		is divided between sev	veral users and each users is	
D)	None of these	100			
75. If th	he penalty factor	of a plant is unity	, its incremental transn	nission Ioss is	
A)	1.0	B)-1.0	C) Zero	D) None of these	