CET (PG) - 2017 Booklet Series Code : A

Important: Please consult your Admit Card / Roll No. Slip before filling your Roll Number on the Test Booklet and Answer Sheet.

	(In Figures)	(In Words)
Roll No. :		
O.M.R. Answer S	heet Serial No. :	
Signature of the C	andidate:	

Subject : M.Sc. Industrial Chemistry

Time: 90 Minutes1

[Maximum Marks: 75

No. of Questions: 75]

[Total No. of Printed Pages: 16

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS:

- Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- To open the Question Booklet remove the paper seal gently when asked to do so. 4.
- Please check that this Question Booklet contains 75 questions. In case of any discrepancy, inform the Assistant 5. Superintendent within 10 minutes of the start of test.
- Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
- 9. Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not
- For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used. 11.
- The Answer Sheet is designed for computer evaluation. Therefore, If you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- After the test, hand over the Question Bookiet and the Answer Sheet to the Assistant Superintendent on duty.
- In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination half. Any candidate found doing so, would be expelled from the examination.
- A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculator is not allowed.

 Consider the following half cell reactions 	1.	Consider	the	following	half	cell	reactions	
--	----	----------	-----	-----------	------	------	-----------	--

$$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^- \, \text{E}^\circ = 1.36 \, \text{V} \text{ and } \text{Fe}^{+3} + \text{e}^- \rightarrow \text{Fe}^{+2} \, \text{E}^\circ = 0.77 \, \text{V}$$

Which of the following reactions may occur spontaneously?

(A)
$$Cl_2 + 2Fe^{+2} \rightarrow 2C\Gamma + 2Fe^{+3}$$
 (B) $Cl_2 + 2Fe^{+3} \rightarrow 2C\Gamma + 2Fe^{+2}$

(C)
$$2C\Gamma + 2Fe^{+3} \rightarrow Cl_2 + 2Fe^{+2}$$
 (D) $2C\Gamma + 2Fe^{+2} \rightarrow Cl_2 + 2Fe^{+3}$

Consider the following reaction: 2.

Which substance is the reducing agent in the above reaction ?

6.	Ina	n X-ray diffraction pattern if the	reflecti	ons from the crystal planes 110, 100,
	210	, 211 are absent, the crystal lat	ice is:	
	(A)	Primitive (simple) cubic	(B)	End centred cubic
	(C)	Body centred cubic	(D)	Face centred cubic
7.	The	coordination number of coppe	r in the	complex formed by adding excess of
	amı	monia in copper sulphate solu	tion is :	
	(A)	4	(B)	3
	(C)	2	(D)	6
8.	The	rate of reaction between A	and B is	ncreases by a factor of 1000 when
	con	centration of A is changed fr	om 0.5	mol L ⁻¹ to 5 mol L ⁻¹ . The order of
	read	ction with respect to A is :		
	(A)	0	(B)	1
	(C)	2	(D)	3
9.	The	orbital structure of singlet car	rbene a	nd triplet carbene is :
	(A)	Linear and Linear	(B)	Linear and Bent
	(C)	Bent and Linear	(D)	Bent and Bent
10.	An	organic reaction used to conve	rt an arc	omatic aldehyde and an anhydride to
	and	x, β unsaturated carboxylic acid	d using	sodium acetate and a base is known
	as:			
	(A)	Knoevenagel condensation	(B)	Perkin condensation
	(C)	Cannizzaro reaction	(D)	Mannich reaction

11. Predict the product A in the following reaction :

- Arrange the following compounds in the increasing order of shielding of the methyl protons: CH₃F, (CH₃)₃N, CH₃OCH₃, CH₃CH₃:
 - (A) CH₃F, (CH₃)₃N, CH₃OCH₃, CH₃CH
 - (B) CH₃F, CH₃OCH₃, CH₃CH₃ (CH₃)₃N
 - (C) CH3F, CH3OCH3, (CH3)3N, CH3CH3
 - (D) (CH₃)₃N, CH₃F, CH₃OCH₃, CH₃CH₃
- 13. Treatment of Grignard reagent with α , β unsaturated carbonyl compound in the presence of cuprous chloride gives :
 - (A) 1, 2 addition product (100%)
 - (B) 1, 4 addition product (100%)
 - (C) 1, 2 addition product (major) and 1, 4 addition product (minor)
 - (D) 1, 2 addition product (major) and 1, 4 addition product (minor)

D_	0		ore-fi	A-Se
	(C)	D _{3h}	(D)	D _{3VA}
	(A)	C _{3h}	(B)	C _{3V}
20.	The	point group of ammonia molecu	ule is	
	(C)	Hydroformylation reaction	(D)	Wacker process
	710-00	Robinson condensation reaction	(B)	Monsanto reaction
19.		obaltoctacarbonyl is used as a c		
	(C)	Zymase	(D)	Nitrogenase
		Superoxide Dismutase	(B)	Carbonic anhydrase
18.		ch metalloenzyme, is used in nit		
	(C)	CO < CO ₃ ²⁻ < CO ₂	(D)	CO < CO ₂ < CO ₃ ²
	(A)	CO2- < CO2 < CO	(B)	CO2 < CO3 - < CO
17.	The	correct order of increasing C-O	bond	length in CO, CO ₃ ²⁻ , CO ₂ is:
	(C)	Square planar	(D)	Tetrahedral
		Spherical	(B)	Trigonal bipyramid
16,		has a shape of:	53275	
	(C)	60	(D)	128
	(A)	32	- 655	40
	The	equivalent weight of the given of	eleme	nt will be :
15.				xygen is 20% of the oxide by weigh
	(0)	(NH ₄) ₃ P O ₄	(1)	mgoi ₂
		(NH _d) ₃ PO _d		MgCl ₂
	(A)	'AgNO ₃	(B)	Na ₂ SO ₄

A-	Set		page-7		D-8
	(D)	separation is most efficier	nt		77. 0
	(C)	minimum number of the th	neoretical plat	es is required	
	(B)	number of plates is infinity	1		
	(A)	number of plates is zero			
25.	Atr	ninimum reflux ratio for a	given separa	ition:	
	(D)	dry materials having high	bound moistu	re content	14
	(C)	increase drying temperatu	ire		
	(B)	reduce drying temperature	9		
	(A)	dry those materials which	have very hig	h unbound moisture content	
24.	Dry	ing operation under vacu	um is carried	out to :	
	(C)	parabolic	(D)	linear	
	(A)	asymptotic	(B)	hyperbolic	
23.	Ten	perature profile in steady	state heat tr	ansfer is :	
	(D)	are used for smaller heat I	oad		
	(C)	facilitate very large temper		rough tube wall	
	(B)	use metal fins of low thern	nal conductivit	у	
	(A)	give larger area per tube			
22.	Finr	ned tube heat exchangers	:		
	(C)	remains constant	(D)	shows no systematic variation	
	(A)	decreases	(B)	increases	
21.	Whe	en the wavelength of incid	ient X-rays in	creases, the angle of diffraction	n:

D-	8	pag	e-8		A-Set
	(D)	evaporation of water will take place	9		
	(C)	more water will be formed			
	(B)	more ice will be formed			
	(A)	equilibrium cannot be established			
30.	Whe	en pressure is applied on the sys	stem,	ice ↔ water, then :	
	(C)	both F and A decrease	(D)	both F and A increase	
	(A)	only F decreases	(B)	only A decreases	
29.	în a	ny spontaneous process :			
		The Day of the ballon			
	(C)	Sulphur	(D)	Oxygen	
	(A)	Calcium	(B)	Magnesium	
		plant growth ?		Samuel Control	
28,	Wh	ich of the following does not come	unde	er the category of 'secondary	
	(C)	NH.CO ₂ .NH	(D)	NH ₃ .CO ₂ .NH ₃	
	(A)	NH ₂ .CO.NH ₂	(B)	NH ₃ CO.CH ₃	
27.	Ure	ea is represented as :			
	(C)	partial oxidation	(D)	hydrogenation	
	(A)	thermal cracking	(B)	steam reforming	
26.	Arr	nmonia synthesis gas is produce	d from	n natural gas by :	

	(A) (C)	4000 1500	(B)	3000
	(A)	4000	(B)	2100
			111255	2022
	exc	eeds:		
35.	Lan	ninar flow of a Newtonion fluid	ceases	to exist, when the Reynolds number
	(C)	propylene	(D)	styrene
	2012	vinyl acetate	(B)	
34.		gler-Natta catalyst (AIR ₃ - AICI		ed in the polymerisation of : vinyl chloride
	(C)	polyurethane	(D)	polychloroprene
	(A)	polybutadiene	(B)	2 333
33.		oprene is chemically known as :		styrene butadiene rubber (SBR)
	(C)	ethyl chloride	(D)	chloroform
	(A)	chloroethene	(B)	ethylene dichloride
32.	The	monomer of poly vinyl chloride	e (PVC)	is:
	(0)			
	(D)	increases the flame temperature		
	(C)	does not affect the flame length		
	(B)	tends to shorten the flame		
	(A)	lengthens the flame		

D-8	8		page	e-10	A-Se
	(C)	hydrotreating	Sa III	(D)	alkylation
	(A)	catalytic cracking		(B)	catalytic reforming
	aro	natics is :			
40.	In p	etroleum refining, the	process	used	for conversion of hydrocarbons
	(C)	fuel oil		(D)	smoke free kerosene
	(A)	high cetane diesel		(B)	high octane gasoline
39.	Vis	preaking process is use	ed mainly	for ma	aking:
	(C)	n-paraffins		(D)	Naphthenes
	(A)	Aromatics		(B)	i-paraffins
38.	Wh	ich is the most undesir	able comp	onen	t in kerosene ?
	(C)	remains unchanged		(D)	data insufficient to predict
	(A)	increases		(B)	decreases
37.	If th	ne discharge of a centri	fugal pum	p is th	nrottled, then its suction lift:
	(C)	Euler number		(D)	Reynolds number
	(A)	Webernumber		(B)	Mach number
36.	W	ich of the following der	notes the	effect	of compressibility in fluid flow?

41.		he case of infinitely long uniformly charged sheet, the magnitude of electric f intensity at any point P, (at a distance " f "):
	(A)	is directly proportional to distance "r"
	(B)	is inversely proportional to the distance "r"
	(C)	is independent of distance "r"
	(D)	is directly proportional to distance "r2"

42.	A charged particle is moving	linearly in forward direction and enters in a
	transverse magnetic field. The	trajectory of charged particle in the magnetic
	field region will be :	

(A)	circul	ar
de el	-	-

(B) parabolic

(C) linear

(D) spiral

43. According to the laws of radioactive decay, the activity of a radioactive substance can be substantially enhanced by :

(A) increasing its temperature

(B) increasing its pressure

(C) decreasing its temperature

(D) does not depend on physical conditions

44. Generally, with increase in temperature from room temperature to 100°C, the electrical conductivity of metals and semiconductors :

(A) decreases and increases respectively

(B) increases and decreases respectively

(C) decreases for both cases

(D) increases for both cases

45. According to quantum mechanics, the lowest energy state of a particle in a box of finite length "L" has an energy of:

(A)
$$\frac{h}{8mL^2}$$

(B)
$$\frac{h^2}{8mL^2}$$

(C)
$$\frac{h^2}{8mL}$$

(D)
$$\frac{h^2}{8m^2L^2}$$

46. Light amplification by stimulated emission of radiation can be achieved in a :

(A) two level system

(B) three level system

(C) four level system

(D) both (B) and (C)

D-8	2	na	ge-12	A-Set
	(C)	Infrared rays	(D)	X-rays
	(A)	Gamma rays	(B)	Ultraviolet rays
		talline materials ?		
53.	Whi	ch of the following can be u	sed for	studying the crystal structure of
	(C)	r/12	(D)	R/16
	(A)	R/4	(B)	P/8
	resu	ulting network will be :		
		아이들이 아이들이 아들은 아이들이 아름이 아름다면 되었다면 하는데 얼마를 하게 하는데 하는데 하다.	\$2-10.140 dist	ds. The effective resistance of the
201		경우에 되었다. 즐겁니다 그런 사람이 되는 그런 그리고 생각하다. 그 그리면 그리고 하는 그리고 있다.		s length. Then, these four pieces are
52.	A m	etallic wire of length "L" and ar	ea of cr	oss-section "S" has resistance "R".
	(C)	Bose-Einstein statistics	(D)	Both (B) and (C)
	(A)	Maxwell-Boltzmann statistics	(B)	Fermi-Dirac statistics
51.	Pho	tons follow the :		
	(0)	IVII.	(D)	ML
		MLT-1		ML ² T ⁻² ML ² T ⁻³
	are	ML ² T ⁻¹	(12)	MI 2T-2
50.			is 6.626	× 10 ⁻³⁴ Joule-second. Its dimensions
	20.00		100	
	200	3πR ²	100	4πR ²
		πR ²		2πR ²
49.				cut into four equal parts by slicing i area of one of the four parts will be
	(0)		(0)	2810
	1	2 <i>c</i>		d2
	eac	h other. Their relative speed w	ill be:	V 74-2
48.	Two	photons, each moving with s	peed o	I light i.e. "c", are heading toward
	(C)	1.6 × 10 ⁻¹⁹ Coulomb	(D)	1.6 × 10 ⁻¹⁹ Watt
	B-114-	1.6 × 10 ⁻¹⁹ Volt		1.6 × 10 ⁻¹⁹ Joule

	(C)	36	(D)	48					
	6.46.1	0.0	1500	40					
	(A)	12	(B)	24					
60.	The value of the integral $\int_0^\infty x^9 \exp(-x^2) dx$ is :								
	(C)	Anti-ferromagnet	(D)	Diamagnet					
	(A)	Ferromagnet	(B)	Paramagnet					
	the	following best describes this san	1000						
				from within the material. Which of					
59.				cooled below a certain temperature,					
	(C)	10 ⁻¹² m	(D)	10 ⁻¹⁵ m					
	1000	10 ⁻⁶ m	70.00	10 ⁻⁹ m					
		er of :							
58.			g with	a c/2 (c is speed of light) will be of the					
	(C)	48 km/h	(D)	56 km/h					
	(A)	50 km/h	(B)	52 km/h					
	car	for the whole journey is :							
57.				s A and B with speeds of 60 km/h and any point. The average speed of the					
			- Int	A and Builth and do of 60 km/h and					
	(C)		(D)						
50.	(A)	경영화 사람들이 얼마나 아니는 아니라 나를 보고 있다.	(B)						
56.	Whi	ich of the following crystal struct	urae	has lesst packing fraction ?					
	(C)	electrical conductivity of material	(D)	stopping potential					
	4	intensity of incident light	871.4	frequency of incident light					
55.		tording to theory of photoelect toelectrons for a specific materia		effect, maximum kinetic energy of pends upon :					
	-	CONTRACTOR I PARTICIPANTO EN LA CARRA CONTRACTOR DE CONTRA	Carlo Co						
	(C)	total internal reflection of white ligh	nt(D)	diffraction of white light					
54.		reflection of white light		refraction of white light					

 61. The equation x³ - 11x + 20 = 0 has: (A) a multiple root (B) three real roots (C) three distinct real roots (D) one real and a pair of one real and a pair of										
(C) three distinct real roots (D) one real and a pair of or (A) all positive integers (B) all positive even integer (C) 1 and 2 (D) 1 only 63. If A is a real symmetric matrix, then all Eigen values of A are: (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound properties (B) The set of all irrational numbers (B) The set of all real numbers (C) The set of all negative rational numbers										
62. What are the possible degrees of polynomials irreducible over re (A) all positive integers (B) all positive even integer (C) 1 and 2 (D) 1 only 63. If A is a real symmetric matrix, then all Eigen values of A are: (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound properties of the set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers										
(A) all positive integers (C) 1 and 2 (D) 1 only 63. If A is a real symmetric matrix, then all Eigen values of A are: (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound property (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers	complex roots									
(C) 1 and 2 (D) 1 only 63. If A is a real symmetric matrix, then all Eigen values of A are: (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound property (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers	eal numbers ?									
 63. If A is a real symmetric matrix, then all Eigen values of A are: (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound proportion (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers 	rs									
 (A) real (B) purely imaginary (C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound properties. (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers 										
(C) non-real complex numbers (D) either 1 or -1 64. Which one of the following sets has the least upper bound proper (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers	If A is a real symmetric matrix, then all Eigen values of A are :									
64. Which one of the following sets has the least upper bound properties (A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers										
(A) The set of all rational numbers (B) The set of all irrational numbers (C) The set of all negative rational numbers										
(B) The set of all irrational numbers (C) The set of all negative rational numbers	Which one of the following sets has the least upper bound property?									
(C) The set of all negative rational numbers										
(D) The set of all natural numbers										
Which one of the following is false ?										
(A) There exists a binary operation which is associative but not commutative										
(B) There exists a binary operation which is commutative but not associative										
C) There exists a binary operation which is neither commutative nor associative										
(D) One of the above is false										
66. The rank of a matrix A is equal to :										
(A) the number of non-zero rows of A										
(B) the number of zero rows of A										
(C) maximum number of linearly independent rows of A										
(D) maximum number of linearly dependent rows of A										
The curvature of the curve $r(t) = (2 \cos(t), 2 \sin(t))$ at t is:										
(A) 2 (B) 1 (C) 1/2 (D)	1/2									
68. The cubic $x^3 + px + q$ has three distinct real roots if :										
(A) $4p^3 + 27q^2 < 0$ (B) $4p^3 + 27q^2 = 0$										
(C) $4p^3 + 27q^2 > 0$ (D) $4p^3 + 27q^2 \le 0$										

60	The	GCD	of	,3	_	2		x+	1	and $x^4 - 1$ is	8 :
03.	THE	GUU	OI:	A	+		æ	AT		and A - I H	

(A) x-1

(B) x + 1

(C) x4-1

(D) $x^3 + x^2 + x + 1$

70. If (x_n) is a monotone sequence of real numbers, then it is :

(A) convergent

(B) Cauchy

(C) bounded

(D) convergent only if it is bounded above

71. The Laplace transformation of cos t is:

(A) $\frac{1}{(s^2+1)}$

(B) $\frac{s}{(s^2+1)}$

(C) $\frac{1}{(s^2-1)}$

(D) $\frac{s}{(s^2-1)}$

72. Which of the following is invariant under elementary row transformations on a matrix A?

(A) Rank of A

(B) Inverse of A

(C) Determinant of A

(D) Adjoint of A

73. The principle argument of the complex number -1 - / is :

 $(A) -\frac{\pi}{4}$

(B) = 4

(C) $-\frac{3\pi}{4}$

(D) $\frac{5\pi}{4}$

74. The remainder on dividing
$$x^{10} - 6x^7 + 9x - 2$$
 by $x - 1$ is :

(A) 0

(B) 1

(C) 2

(D) 3

75. Every system of m-linear equations with real coefficients and n variables has a solution if :

(A) m = n

(B) m < n

(C) m > n

(D) m≥n