Sr. No. :	 132	65	3

CET (UG) - 2017 Booklet Series Code : A

Important: Please consult your Admit Card / Roll No. Slip before filling your Roll Number on the Test Booklet and Answer Sheet.

17	(In Figures)	(In Words)	
Roll No. :			
O.M.R. Answe	r Sheet Serial No. :	CATE CONTRACTOR OF THE CONTRAC	
Signature of th	e Candidate :		

Subject : CHEIVIIS I

[Maximum Marks: 120 Time: 70 Minutes] [Total No. of Printed Pages: 16 No. of Questions: 601

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS:

- Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding 2. bubbles with Black Ball Point/Black Gel pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet. 3.
- To open the Question Booklet remove the paper seal gently when asked to do so. 4.
- Please check that this Question Booklet contains 60 questions. In case of any discrepancy, inform the Assistant 5. Superintendent within 10 minutes of the start of test.
- Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question darken 6. only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question
- Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used.
- The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so, would be expelled from the examination.
- A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

A-	Set	page-3	K-5
	(D)	Both are radioactive in nature	8 (C)
	(C)	Both show size contraction	
	(B)	Both exhibit spectral and magnetic prop	
	(A)	Both have +3 as common oxidation stat	
5.	Whi	ch of the following is wrong for lantha	
			(D) Moleculus of gases
	(D)	In acidic medium KMnO ₄ is oxidized to	MnO ₂
	(C)	MnO and MnO ₂ are basic while Mn ₂ O ₃	is acidic in nature
	(B)	Ferromagnetism is the extreme case of	paramagnetism
150	(A)	The highest oxidation state of rhenium	
4.	Pick	k a correct statement from the followin	9. Which of the following paremet
	(C)	SCN ⁻ (D)	N ₃
	(A)	NO- (B)	CNT
3.	Whi	ich of the following ions is not a pseud	iohalide ion ?
	(C)	NO ₂ (D)	N ₂ O ₄
	(A)	NO (B)	N ₂ O ₃ and contract to deliver a
	ion	?	
	resp	ponsible for the appearance of dark b	rown color in the ring test for nitrate
2.	Whi	ich of the following oxides is parama	
	(0)		
	(C) (D)	It acts as depressant to separate the two It helps in the concentration of ore	o ores
	(B)	It acts as a froth stabilizer	Tatanhadaal kan square plans
	(A)	It acts as a water repellent	
		taining zinc sulphide and lead sulphic	
1.		at is the role of sodium cyanide in th	
			THE WAY TO A WAY TO SEE A SECOND TO SEE

(B)	Both are square planar			
(C)	Tetrahedral and square planar	, respect	ively	
(D)	Both are tetrahedral			
Whi	ch of the following ligands is	not a che	elating ligand ?	
(A)	Acetylacetonate	(B)	Triphenylphosphine	
(C)	Ethylenediamine	(D)	2,2-bipyridyl	
Whi	ch of the following has maxin	num mas	s?	
(A)	1.672 × 10 ²¹ molecules of wat	er		
(B)	1.0 × 10 ²³ molecules of H ₂ S			
(C)	6.022 × 10 ²³ atoms of O			
(D)	1×10^{23} molecules of O_2			
Whi	ch of the following paramete	rs will be	same for the equal volumes of two	2
diffe	erent gases under constant te	mperatu	re and pressure ?	
(A)	Density of gases			
(B)	Mass of gases			
(C)	Atoms of gases			
(D)	Molecules of gases			
If th	e principle quantum number	(n) is 4,	what will be the number of orbitals	CO.
havi	ing /= 3 ?			
(A)	9	(B)	7	
(C)	E	(D)	2	
	Whi (A) (C) Whi (A) (B) (C) (D) Whi diffe (A) (B) (C) (D)	Which of the following ligands is (A) Acetylacetonate (C) Ethylenediamine Which of the following has maxim (A) 1.672 × 10 ²¹ molecules of wate (B) 1.0 × 10 ²³ molecules of H ₂ S (C) 6.022 × 10 ²³ atoms of O (D) 1 × 10 ²³ molecules of O ₂ Which of the following parameter different gases under constant terms (A) Density of gases (B) Mass of gases (C) Atoms of gases (D) Molecules of gases	Which of the following ligands is not a che (A) Acetylacetonate (B) (C) Ethylenediamine (D) Which of the following has maximum mas (A) 1.672 × 10 ²¹ molecules of water (B) 1.0 × 10 ²³ molecules of H ₂ S (C) 6.022 × 10 ²³ atoms of O (D) 1 × 10 ²³ molecules of O ₂ Which of the following parameters will be different gases under constant temperature (A) Density of gases (B) Mass of gases (C) Atoms of gases (D) Molecules of gases If the principle quantum number (n) is 4, having I = 3?	Which of the following ligands is not a chelating ligand? (A) Acetylacetonate (B) Triphenylphosphine (C) Ethylenediamine (D) 2,2-bipyridyl Which of the following has maximum mass? (A) 1.672 × 10 ²¹ molecules of water (B) 1.0 × 10 ²³ molecules of H ₂ S (C) 6.022 × 10 ²³ atoms of O (D) 1 × 10 ²³ molecules of O ₂ Which of the following parameters will be same for the equal volumes of two different gases under constant temperature and pressure? (A) Density of gases (B) Mass of gases (C) Atoms of gases (D) Molecules of gases If the principle quantum number (n) is 4, what will be the number of orbitals having I = 3?

Predict the geometry of Ni (CO)₄ and [Ni (CN)₄]²⁻

11	Which is	not is	otone of	pach	other fr	om the	following	species ?	,
11.	Which is	HOLIS	orone of	each	other ii	OHI THE	lonowing	sheries !	

(A) 14/6 N

(B) 15/7 N

(C) 14/7 N

(D) 16/8 N

12. Which of the following represents increasing order of ionic radii?

- (A) Na+ < F- < O2- < N3-
- (B) N³⁻ < O²⁻ < F⁻ < Na⁺ mod and phone is a few days provided and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second and phone is a few days and the second an
- (C) Na+ < N3- < O2- < F-
- (D) Na+ < N3- < O2- < F

13. Which of the following has maximum dipole moment?

(A) HF

(B) HCI

(C) HBr

(D) HI

14. Which of the following pairs is iso-structural?

- (A) XeF₄ and SF₄
- (B) NH₃ and BCl₃
- (C) XeF, and IF,
- (D) SiCl₄ and PtCl₄²⁻

15. Which of the following hydrides possesses ionic bond between central atom and hydrogen ?

(A) Sodium hydride

- (B) Diborane
- (C) Lithium aluminium hydride
- (D) Palladium hydride

16.	Which of the following	has largest size in aqueous solution?
		Many Control of the C

(A) Na⁺

(B) K+

(C) Li+

(D) Cs+

17. Pick a correct statement for boron and its compounds :

- (A) Boron consists of octahedral B20 units in its crystalline form
- (B) B₅H₉ can be named as pentaboron
- (C) Boron nitride resembles with graphite
- (D) BF₃ is strongest Lewis acid among the boron trihalides

18. What is the total number of electrons surrounding Kr in KrF2?

(A) 2

(B) 6

(C) 8

(D) 10

(A) H2S

(B) H₂O₂

(C) SO₂

(D) HNO

(A) SO₃

(B) NO

(C) CH₄

(D) CO

	(A)	H ₂ O	(B)	Nn ₃
	(C)	H ₂ S	(D)	BF ₃
23.	Incr	reasing order of stability among	the th	ree main conformations (i.e. eclipse,
	anti	, gauche) of ethane is :		
	(A)	Eclipse < gauche < anti	(B)	Gauche < eclipse < anti
	(C)	Eclipse < anti < gauche	(D)	Anti < gauche < eclipse
24.	Aci	d catalyzed hydration of 2-pheny	l prop	ene gives :
	(A)	2-phenyl-2-propanol	(B)	2-phenyl-1-propanol
	(C)	3-phenyl-1-propanol	(D)	1-phenyl-2-propanol
25.	In th	ne reaction sequence shown bel	ow the	compound X is :
		CI ^ +	HCI-	29. Window of the following coxido
	(A)	1,1-Dichloroethane		
	(B)	1, 2-Dichloroethane		
	(C)	Tetrachloroethylene		BHOLLID (6)
	(D)	Tetrachloroethane		
26.	A h	ydrocarbon with molecular form	nula C	GH ₁₂ on ozonolysis gives only one
	con	npound which does not respond	to Tol	len's reagent test but gives positive
	iode	oform test. The hydrocarbon is:		
	(A)	2-Methyl-2-pentene		
	(B)	2-Hexene		
	(C)	3-Hexene		

page-7

K-5

22. Which of the following behaves as an electrophile?

(D) 2, 3-Dimethyl-2-butene

A-Set

27.	Whi	ch of the following	compo	unds/io	ns is	aromatic in natu	ire?	
	(A)	\						
	(B)	U		pit on p				
	(C)	V						
	(D)	\bigcirc						
						-STOMOREDYOL	makin yang en alkam	
28.	Whi	ch of the following						5
	(A)	SO ₂			(B)	SO ₃ +		
	(C)	SO ₃			(D)	HSO ₄		
29.	Whi	ch of the following	compo	ounds u	nder	goes nucleophili	c substitution mo	st
	rapi	dly through S _N 2 m	echanis	sm ?				
	(A)	CH ₃ CH ₂ Br						
	(B)	CH ₂ =CHBr						
	(C)	(CH ₃) ₃ CBr						
	(D)	(CH ₃) ₂ CHBr						
		evip tud test tinopr						
30.		nary, secondary ar						
	(A)	Lucas reagent						
	(B)	Baeyer's reagent						
	(C)	Brady's reagent						
	(D)	Tollen's reagent						
	-	170000000000000000000000000000000000000					A-S	
K-	5			pag	e-8		A-5	et

A-	Set	D.	page-9		K-5				
	(C)	Anomers	(D)	Enantiomers	(0)				
	(A)		1996.1	m 1					
37.	α-D	-(+)-glucose and β-D-(+)-gluco	ose are :						
	(C)	H ₃ PO ₃	(0)	F ₂ O ₅					
	(A)	H ₃ PO ₄		H ₃ PO ₂					
36.		ich reagent is used for the c zene ?	onversio	n of benzenediazonium ch	loride to				
	(C)	Hinsberg reagent	(U)	Tollen's reagent					
	1000	Baeyer's reagent							
35.		nary, secondary and tertiary a							
	01-01				(A)				
	(A) (C)	Butanoic acid 3-Chlorobutanoic acid	(D)	4-Chlorobutanoic acid					
34.		ich of the following is stronge	st acid ?	2-Chlorobutanoic acid					
	(C)	Trimethyl acetaldehyde	(D)	Formaldehyde					
	(A)	Acetaldehyde	(B)	Benzaldehyde					
33.	Which one of the following aldehyde does not undergo Cannizzaro reaction								
	(C)	[⊕] CHCl ₂	(D)	· CCI ₃					
	(A)	[⊕] CCI ₃	(B)	: CCI ₂					
32.	Wh	ich reactive intermediate is in	volved in	Riemer-Tiemann reaction ?	9				
	(C)	CH ₃ CH ₂ MgBr and CH ₃ CHO	(D)	CH ₃ CH ₂ MgBr and CH ₃ CH ₂	ОН				
	33.0	CH ₃ CH ₂ MgBr and CH ₃ COCH	•	CH ₃ CH ₂ MgBr and HCOOC					
31.		anol?	One can	Nationed Displacement					

About O

60

44.	usir K _b = (A) (C) The (A) (C)		(B) (D) red co (B) (D)	52.4% 74%
44.	usir K _b = (A) (C) The (A) (C) The (A)	ng the following information will = 0.52 kg molal ⁻¹): 0.16 0.1	(B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	0.05 0.2 ubic structure is: 52.4% 74% etal halides is generally due to: Frenkel defect
44.	usir K _b = (A) (C) The (A) (C)	ng the following information will = 0.52 kg molal ⁻¹): 0.16 0.1 packing efficiency in <i>Body Cent</i> 45.2% 68% appearance of colour in solid all	(B) (D) red co (B) (D) kali m	0.05 0.2 ubic structure is: 52.4% 74% etal halides is generally due to:
	usir K _b = (A) (C) The (A) (C)	ng the following information will = 0.52 kg molal ⁻¹): 0.16 0.1 packing efficiency in <i>Body Cent</i> 45.2% 68%	(B) (D) red co (B) (D)	0.05 0.2 ubic structure is: 52.4% 74%
	usir K _b = (A) (C) The	ng the following information will = 0.52 kg molal ⁻¹): 0.16 0.1 packing efficiency in <i>Body Cent</i> 45.2%	(B) (D) red co	olecular weight of CuCl ₂ = 134.4 and 0.05 0.2 ubic structure is: 52.4%
	usir K _b = (A) (C)	ng the following information will = 0.52 kg molal ⁻¹) : 0.16 0.1 packing efficiency in <i>Body Cent</i>	(B) (D)	0.05 0.2 ubic structure is:
	usir K _b = (A) (C)	ng the following information will = 0.52 kg molal ⁻¹): 0.16 0.1	(B) (D)	0.05
	usir K _b = (A)	ng the following information will = 0.52 kg molal ⁻¹) : 0.16	(B)	0.05
	usir K _b = (A)	ng the following information will = 0.52 kg molal ⁻¹) : 0.16	(B)	olecular weight of CuCl ₂ = 134.4 and
	usir K _b :	ng the following information will = 0.52 kg molal ⁻¹):	be (M	olecular weight of CuCl ₂ = 134.4 and
43.				
	(C)	8.20 × 10 ⁻² L atm K ⁻¹ mol ⁻¹	(D)	8.314 JK ⁻¹ mol ⁻¹
		1.99 × 10 ⁻³ kcalK ⁻¹ mol ⁻¹		8.314 x 10 ⁷ erg K ⁻¹ mol ⁻¹
42.		STP, the value of gas constant R		2 10 10 10 10 10 10 10 10 10 10 10 10 10
	EINE	(8) 2-Charaterlanoic noid		
	(C)	= 33.35	(D)	34. Which of the following is a 20
	(A)	> 22.35	(B)	< 11.35
		eeds 0.2 bar. If at 1 bar the gas of balloon be expanded ?	ccupi	es 2.27 L volume, up to what volume
41.				mperature and it will burst if pressure
	(C)	Phenyl alanine & Glutamic acid	(D)	Phenyl alanine & Valline
	(A)	Glycine & Phenyl alanine	1757207	Phenyl alanine & Aspartic acid
40.	Arti	ficial sweetener Aspartame deriv	ed fro	om which amino acids :
	(C)	Synthetic detergents	(D)	Antibiotics
	(A)		(B)	
39.	11/2/2007	yl benzene sulphonates are impo		
	(0)	Tolyatylene Brauno Rome	(5)	COUNTY CHARLEST (A)
	(A) (C)	Nylon-66 Polystyrene	(B) (D)	Polyethylene Bakelite
38.		ich of the following is a polyamid		Polyothylone

- 46. Effect of dilution on conductance is as follows:
 - (A) Both increase with dilution
 - (B) Both decreases with dilution
 - (C) Specific conductance increases, molar conductance decreases
 - (D) Specific conductance decreases, molar conductance increases
- 47. If the molar conductance at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. The molar conductance at infinite dilution for Acetic acid is:
 - (A) 290.5 S cm2 mol-1
 - (B) 300.9 S cm² mol⁻¹
 - (C) 390.5 S cm2 mol-1
 - (D) 409.9 S cm2 mol-1
- 48. The relationship between C_p and C_v is:
 - (A) $C_p + C_v = R$
 - (B) $C_p R = C_v$
 - (C) $C_p + R = C_v$
 - (D) $C_p + C_v = -R$
- 49. 6 moles of an ideal gas at 327 K is allowed to expand isothermally and reversibly from a volume of 10 liters to 20 liters. Compute enthalpy change ΔU in kJ:
 - (A) 0 kJ
 - (B) 1 kJ
 - (C) -8.83 kJ
 - (D) 8.83 kJ

50.	In which of the following condit	ions, entropy will decrease :
	(A) $H_2(g) \longrightarrow 2 H(g)$	
	(B) Temperature of a crystalline	solid is raised from 0 K to 115 K
	(C) A liquid crystallizes into a so	olid
	(D) Sodium bicarbonate decom	poses into sodium carbonate, carbon dioxide and
	water	
51.	K _c for the following reaction is	2 × 10 ¹³ at 300 K
	Sucrose + H ₂	O ← Glucose + Fructose,
	the value of ΔG at 300 K is :	
	(A) $-3.82 \times 10^4 \mathrm{Jmol}^{-1}$	
	(B) 3.82 × 10 ⁴ Jmol ⁻¹	
	(C) -7.64 × 10 ⁴ Jmol ⁻¹	
	(D) 7.64 × 10 ⁴ Jmol ⁻¹	
52.	The pK _a of acetic acid and pK	b of ammonium hydroxide are 4.76 and 4.75
	respectively. The pH of ammon	ium acetate is :
	(A) 7	(B) 9
	(C) 11	
53.	Molarity of a solution containing	g 5 g of NaOH in 450 mL :
	(A) 0.134 M	(B) 0.278 M
	(C) 0.398 M	(D) 0.482 M

- 54. Mountain climbers feel weak and show symptoms of anoxia at high altitude because:
 - (A) At high altitudes, the partial pressure of oxygen is less than that at the ground level.
 - (B) At high altitudes, the partial pressure of oxygen is more than that at the ground level.
 - (C) At high altitudes, the partial pressure of oxygen is same as that at the ground level.
 - (D) At high altitudes, the partial pressure of oxygen is zero
- 55. Which is the correct order of reduction potential?
 - (A) F2 > H+ > Li+
 - (B) F₂ < H⁺ < Li⁺
 - (C) F₂ = H⁺ > Li⁺
 - (D) $F_2 = H^+ \le Li^+$
- 56. The equilibrium constant of the reaction having E_{cell} = 0.46 V is :

- (A) 1.02 x 10¹⁵
- (B) 2.02 × 10¹⁵
- (C) 3.92 x 10¹⁵
- (D) 5.92 × 10¹⁵

1/	-		nama 14			A-Set
	(D)	15 times half-life ($t_{1/2}$)			E WING E	(4)
	(C)	10 times half-life ($t_{1/2}$)				
	(B)	5 times half-life (t _{1/2})				
	(A)	2 times half-life $(t_{1/2})$				
	is:					
60.	For	the first order reaction, tin		or completion o	f 99.9% of the	reaction
	(C)	Second order	(D)	Third order		
	(A)	Half order	(B)	First order		
	Rat	e = k [A] ^{3/2} [B] ⁻¹ :				
59.	The	overall order of the rea	ction which	has the follo	wing rate exp	ression
	(C)	Zymase	(D)	Unease		
	(A)	Maltase	(B)	Diastase		
58.	The	enzyme required for conv	erting malto	se to glucose	s:	
	(D)	Physisorption is not specif	ic in nature			
	(C)	Physisorption requires high	h activation er	nergy		
	(B)	Physisorption is reversible	in nature			
	(A)	Physisorption arises becau	use of van der	Waals forces		

57. Which of the following statements is incorrect?