CET(PG)-2015

Sr. No.:

240039

Ouestion Booklet Series: A

and	Answer Sheet.		
Roll No.	In Figures	In Words	
reon			12

Signature of the Candidate:

Subject : M.Tech. (Polymer)

Number of Questions: 75 Time: 90 minutes

Maximum Marks: 75

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS

Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.

Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the 2. corresponding bubbles with Black Ball Point / Black Gel pen.

Do not make any identification mark on the Answer Sheet or Question Booklet. 3.

To open the Question Booklet remove the paper seal gently when asked to do so. 4.

Please check that this Question Booklet contains 75 questions. In case of any discrepancy, inform 5. Assistant Superintendent within 10 minutes of the start of test.

Each question has four alternative answers (A, B, C, D) of which only one is correct. For each questi-6. darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sh with Black Ball Point / Black Gel pen.

If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.

Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the 8. Question Booklet.

Negative marking will be adopted for evaluation i.e., 1/4th of the mark of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.

10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.

For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used.

12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the

13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.

14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so, would be expelled from

15. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.

16. Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculator is not allowed.

1. The velocity distribution in turbulent flow in a pipe is given approximately by Prandtl:

(A)
$$\frac{u}{u_{\text{max}}} = \left(\frac{y}{R}\right)^{1/3}$$

(B)
$$\frac{u}{u_{\text{max}}} = \left(\frac{y}{R}\right)^{1/5}$$

(C)
$$\frac{u}{u_{\text{max}}} = \left(\frac{y}{R}\right)^{1/7}$$

(D)
$$\frac{u}{u_{\text{max}}} = 1 - \left(\frac{y}{R}\right)^{1/7}$$

Where y is the distance measured from the pipe wall and R is pipe radius.

2. For turbulent flow in a pipe, the value of kinetic energy correction factor (α):

(A) is 0.75

(B) is 2

(C) varies from 1.01 to 1.10

(D) is more than 2

3. Solvent used in azeotropic distillation known as entrainers :

- (A) is of low volatility
- (B) forms a low-boiling azeotrope
- (C) forms a high-boiling azeotrope
- (D) does not alter the relative volatility of the original components

4. A measure of the effect of compressibility in fluid flow is the magnitude of a dimensionless parameter known as:

(A) Reynolds number

(B) Weber number

(C) Euler number

(D) Mach number

5. The chemical formula for Glauber's salt is :

(A) Na,CO,.10H,O

(B) Na₂SO₄.10H₂O

(C) Na,CO,.H,O

(D) Na₂SO₄.5H₂O

6. The Prandtl number of a fluid is the ratio of :

- (A) Thermal diffusivity to momentum diffusivity
- (B) Momentum diffusivity to thermal diffusivity
- (C) Conductive resistance to convective resistance
- (D) Thermal diffusivity to kinematic diffusivity

7. In the sulphate pulp process, the digestor conditions are :

(A) 120-130°C and 5 atm

(B) 120-130°C and 1 atm

(C) 70-80°C and 15 atm

(D) 175-180°C and 10 atm

- The action of a catalyst follows its ability to change the :
 - (A) heat of reaction
 - (C) activation energy
- (B) heat of formation of the product
- (D) equilibrium constant

- Styrene is produced by :
 - (A) Catalytic oxidation of cumene
 - (C) Dehydrogenation of ethylbenzene
- (B) Catalytic oxidation of toluene
- (D) Catalytic oxidation of O-xylene
- 10. Measuring lag of a first order instrument is taken as :
 - (A) Zero
 - (C) Two time constant

- (B) One time constant
- (D) Half time constant
- 11. Phenol and Formaldehyde are polymerised to a resultant product known as :
 - (A) PVC
 - (C) polyester

- (B) bakelite
- (D) teflon

12. PVA has the chain structure

The monomer that this is made from is:

- (A) HO-CH=CH-COCH,
- (C) CH₃-CH₂-O-COCH₃

- (B) CH,=CH-O-COCH,
- (D) CH-O-COCH₃-CH₂

- 13. The Reynolds Analogy:
 - (A) applies only to fluids for which the Prandtl number is unity
 - (B) applies over a range of Prandtl numbers from 0.6 to 120
 - (C) can be used for situations where form drag appears
 - (D) cannot be used for situations where wall drag appears
- 14. A batch of material is dried under constant drying conditions. When drying is taking place from all the surfaces, the rate of drying during the constant rate period is :
 - (A) Directly proportional to the solid thickness
 - (B) Independent of the solid thickness
 - (C) Inversely proportional to the solid thickness
 - (D) Directly proportional to the square of solid thickness

15.	Which one of the following is an add	lition polymer with the same structure as polyeth	ylene		
20,	except that one hydrogen on every of	ther carbon is replaced by a benzene ring?			
	(A) polyvinyl chloride	(B) polypropylene			
	(C) polystyrene	(D) polyurethanc			
16.	Which of the following is NOT a bio	polymer ?			
	(A) protein	(B) polysaccharide			
	(C) polyurethane	(D) RNA			
17.	Advantages to replacement of metal p	arts used in high-temperature applications with cer	amics		
	include:				
	1. Ceramics are easily manufacture	red free of defects.			
	2. Ceramics are less dense than m	etals.			
	3. Ceramics are less brittle than n	netals.			
	4. Ceramics are more resistant to	corrosion than metals.			
	(A) 2,4	(B) 1, 2, 3, 4			
	(C) 2, 3, 4	(D) 1, 3, 4			
18.	An elastomer will fail to regain its o	riginal dimensions following a distortion beyond i	its:		
	(A) glass transition	(B) phase boundary			
	(C) crystallinity	(D) elastic limit			
	m () to and for eleft not me	eivation is .			
19.	The catalyst used for olefin polymer	(B) Wilkinson catalyst			
	(A) Ziegler-Natta catalyst (C) Raney nickel catalyst	(D) Merrifield resin			
20.	Natural rubber is too soft and chen	nically reactive for practical applications. Vulcani	ization		
200	of natural rubber entails :				
	(A) conversion of an addition polym	er to a condensation polymer			
		weight of a condensation polymer			
	(C) decreasing the average molecular weight of an addition polymer				
	(D) cross-linking reactive polymer c				
	X-X AMAZ MANAGET MODE OF S				
M	Tech. (Polymer)/BGI-31189-A	[5] [Turn	over		

28.	Two interacting first order systems connec	ted in se	ries will behave as :	
PER S	(A) an overdamped second order system	(B)	an underdamped second order	er system
	(C) critically damped second order system	(D)	a first order system	
29.	Urez is formed in a low pressure stripping	operatio	n by dehydration of:	
	(A) Ammonium bicarbonate	(B)	Ammonium carbamate	
	(C) Biuret	(D)	Ammonium nitrate	100
30.	Ammonium nitrate is made by reacting liq	uid amn	nonia and 60% nitric acid. T	he reaction
	is:			
	(A) Endothermic		Exothermic	
	(C) Catalytic	(D)	Reversible	
31.	The Sherwood number is defined as :			- Harton
31.	B. Indiana and a second		k	
	(A) $\frac{D_{AB}}{k_a d}$	(B)	D d	
	(A) ked	100	AB	
	DARK		R _c d	
	(C) DABk _c	(D)	AB	
	Where k = mass transfer coefficient for equ	iimolar c	ounter diffusion with concen	tration as the
	driving force			
	d = hydraulic diameter		AND REPORT OF THE PARTY.	
	D _{AB} = diffusivity			
32.	The Chilton-Colburn Analogy for mass tr	ansfer st	ates that :	
	(A) $N_{Sr} N_{Sc}^{1/3} = f/8$		$N_{St} N_{Sc}^{2/3} = f/2$	=
		(4)	$N_{St} N_{Sc}^{2/3} = f/8$	
	(C) $N_{St} N_{Sc}^{3/2} = f/2$	(D)	$N_{St} N_{Sc}^{20} = f/8$	
	Where f = Fanning Friction factor	0.0131		
33	and thermal conductivities k ₁ , k ₂ and k ₃ sequence 1, 2 and 3 and a certain rate of to 3, 2, 1, rate of heat transfer through th	respective	sfer results. If the order is	now reverse
	(A) will decrease			

[7]

[Turn over

(B) will increase

M.Tech. (Polymer)/BGI-31189-A

(C) will remain unchanged

(D) cannot be predicted, more information required

34. Gasoline is siphoned from a car tank, as shown in the figure below. The atmospheric pressure is the same at either end, and the height difference from the top of the tank to the bottom of the siphon is 1.0 m. Utilize Bernoulli's equation to determine the velocity of flow of gasoline out of the tube.

- (A) 1.1 m/s
- (C) 2.2 m/s

- (B) 4.4 m/s
- (D) 8.8 m/s
- 35. The ethanol water azeotrope at 1 atm occurs at :
 - (A) 89.4 mole percent ethanol at 78.2°C
- (B) 89.4 mole percent water at 78.2°C
- (C) 96.0 mole percent ethanol at 78.2°C
- (D) 96.0 percent ethanol at 100°C
- 36. To ensure reasonably uniform distribution of liquid flow on single pass tray in the distillation column, a weir length used is about :
 - (A) 25 to 30% of the tower diameter
- (B) 60 to 75% of the tower diameter
- (C) 15 to 20% of the tower diameter
- (D) 5 to 15% of the tower diameter
- 37. A gaseous solute having mass diffusivity equal to 0.5 cm²/s diffuses into a porous solid having a porosity of 0.5 and a tortuosity of 2. The effective diffusivity in the porous solid is:
 - (A) 0.25 cm²/s

(B) 0.5 cm²/s

(C) 1 cm²/s

- (D) 0.125 cm²/s
- 38. The energy required per unit mass to grind limestone particles of very large size to 100 Mm is 12.7 kWh/ton. An estimate (using Bond's Law) of the energy to grind the particles from a very large size to 50 Mm is:
 - (A) 6.35 kWh/ton

(B) 9.0 kWh/ton

(C) 18 kWh/ton

- (D) 25.4 kWh/ton
- 39. Wilson plot is a graph between :
 - (A) U vs v08

M

(B) 1/U vs 1/v^{0.8}

(C) U vs 1/v^{0.8}

(D) 1/U vs v0.8

M.Tech. (Polymer)/BGI-31189-A

40.	In a tray column, separating a binary mi	cture, with non-ideal stages, ONE of the followi	ng
	statements is TRUE :		
	(A) Point efficiency can exceed 100%		
	(B) Murphree efficiency cannot exceed 10)%	
	(C) Murphree efficiency can exceed 100%	A STATE OF THE PARTY OF THE PAR	
	(D) Both Murphree and point efficiencies	an exceed 100%	
41.	The value of α in Mark-Houwink equation	n [η] = KMα in theta solvent is:	
	(A) 1.0	(B) 0	
	(C) 0.5	(D) 0.8	
42.	A polymer rod is initially 100 mm long.	When subjected to a load of 10,000 kg, it elongate	tes
	elastically to a final length of 200 mm. The	cross-sectional area is 10 square mm. The Young	g's
	modulus of the material is:		
	(A) 50 kg/mm ²	(B) 100 kg/mm ²	
	(C) 500 kg/mm ²	(D) 1000 kg/mm ²	
43.	In a double pipe heat exchanger the outer	diameter of inner pipe is d1 and inner diameter	of
	outer pipe is d2. The equivalent diameter	of annulus for pressure drop calculations is :	
	(A) $(d_2^2 - d_1^2)/d_1$	(B) $4(d_2^2 - d_1^2)/d_1$	
	(C) $(d_2 - d_1)$	(D) $4(d_2 - d_1)$	
44.	The equation DP = 1/1 - p relates degree	of polymerization to the extent of the reaction	is
	known as:		
	(A) Huggin's equation	(B) Carother's equation	
	(C) Mark-Houwink equation	(D) Copolymerization equation	
45.	Which of the following relates the abso	ption and evolution of heat at the junctions of	fa
	thermocouple to the current flow in the	ircuit ?	
	(A) Seebeck effect	(B) Peltier effect	
	(C) Thomson effect	(D) Joule-Thomson effect	
46.	Flash distillation operation is suitable for	separating components which :	
	(A) Boil at very close temperature	(B) Boil at widely different temperature	
	(C) Form minimum boiling azeotrope	(D) Form maximum boiling azeotrope	
M.Te	ech. (Polymer)/BGI-31189-A	[9] [Turn over	

	있는다. 474 전 1년 14일 14일 18일 1일 12일 12일 12일 12일 12일 12일 12일 12일 12일
47. Cellulose is a condensation polymer o	(B) β-Glucose
(A) Maltose	
(C) α-Glucose	(D) β-Fructose
48. 'Nylon 66' is so named because:	
(A) the average degree of polymerizati	on of the polymer is 1966
(D) the number of carbon atoms between	en two nitrogen atoms are o
C - iteasen atoms bety	ween two carbon atoms are 6
- t - t - was first synthesized	in 1966
49. Steam is to be condensed in a shell an	nd tube heat exchanger, 5 m long with a shell diameter
of 1 m. Cooling water is to be used for	or removing the heat. Heat transfer coefficient for the
cooling water, whether on shell side	or tube side, is made. The best arrange
(A) vertical heat exchanger with stear	n on tube side
(B) vertical heat exchanger with stear	m on shell side
(C) horizontal heat exchanger with st	eam on tube side
(D) horizontal heat exchanger with st	eam on shell side
50. In a counter current liquid-liquid ex	straction the solvent B is used to separate solute C from a A and B are insoluble. The slope of operating line will
be:	
(A) Zero	(B) Infinity
(C) Positive	(D) Negative
	quid which exerts an equilibrium vapour pressure :
(A) Equal to that of the pure liquid a	at the given temperature
(B) Less than that of the pure liquid	at the given temperature
a dest of the pure ligh	uid at the given temperature
(C) Greater than that of the pare har	pure liquid at the given temperature
(D) Equal to of less than the	i - i-overes by a factor
52. For a chemical reaction A → B, it is	s found that the rate of the reaction increases by a factor
8 when the concentration of A is d	oubled. If ra C, what must be a los
(A) 2	(B) 1/3
(C) 3	(D) 4
	[10]
M.Tech. (Polymer)/BGI-31189-A	

53. With increasing flow rate, the hydrauli	c efficiency of a centrifugal pump:
(A) monotonically decreases	(B) decreases and then increases
(C) remains constant	(D) increases and then decreases
	ition reaction is found to be 6.2 × 10-4 s-1. The time
54. The rate constant for N ₂ O ₅ decompos	ition reaction is found to be 6.2 × 10 ⁻⁴ s ⁻¹ . The time
required for one half the N2O5 in a sam	(B) 3710 s
(A) 6.2×10^{-4} s	
(C) 1513 s	(D) 1120 s
55. A body falls freely for distance S fr	om rest. An equation for velocity v could take the
form:	
(A) v = K S g	(B) $v = K \sqrt{Sg}$
(C) $v = K(Sg)^2$	(D) $v = K(Sg)^{3/2}$
56. Navier Stokes equation is useful in the	e analysis of :
	(B) Non viscous flows
(A) Viscous flows (C) Turbulent flows	(D) Both viscous and turbulent flows
to the an example to remove wa	weight) solids and the rest water. 90% of the fresh juice ter and subsequently mixed with the remaining 10% of ntains 40% solids. The kg of water removed from 1 kg
fresh juice is :	The state of the s
(A) 0.4	(B) 0.5
(C) 0.6	(D) 0.7
so A sigid vessel containing three moles	s of nitrogen gas at 30°C, is heated to 250°C. Assume the
58. A rigid vessel, containing three moles	s of nitrogen gas at 30°C, is heated to 250°C. Assume the be Cp = 29.1 J/mol°C and Cv = 20.8 J/mol°C. The heat
average heat capacities of nitrogen to	be Cp = 29.1 J/mol C and Cv = 20.8 J/mol C. The del-
average heat capacities of nitrogen to required, neglecting the heat capacit	be Cp = 29.1 J/mol C and Cv = 20.8 J/mol C. The new
average heat capacities of nitrogen to required, neglecting the heat capacit (A) 13728 J	y of the vessel, is:
average heat capacities of nitrogen to required, neglecting the heat capacit (A) 13728 J (C) 4576 J	be Cp = 29.1 J/mol C and Cv = 20.8 J/mol C. The new y of the vessel, is: (B) 19206 J
average heat capacities of nitrogen to required, neglecting the heat capacit (A) 13728 J (C) 4576 J 59. End group analysis gives:	be Cp = 29.1 J/mol C and Cv = 20.8 J/mol C. The han y of the vessel, is: (B) 19206 J
average heat capacities of nitrogen to required, neglecting the heat capacit (A) 13728 J (C) 4576 J	be Cp = 29.1 J/mol C and Cv = 20.8 J/mol C. The non- y of the vessel, is: (B) 19206 J (D) 12712 J

In a counter-flow double pipe heat exchanged is cooled from 90°C to 40°C by water (Mass enters the inner tube at 10°C. The radius of Neglecting the wall resistance the overall heat	the inner tube is 3 cm and its length is 5 in.
in kW/m2.K, is:	(B) 74.3

(A) 0.743

(B) 74.3

(C) 7.43

(D) 2475

61. The velocity distribution in a turbulent flow of a Newtonian fluid in a smooth pipe is a function of the distance y measured from the wall of the pipe and the friction velocity u* and follows a:

(A) Linear law

(B) Parabolic law

(C) Logarithmic law

(D) Hyperbolic law

62. The loss of energy in a commercial pipe fitting, is generally expressed by

in which K, is called loss factor for fitting. Which of the following pipe fitting has the $h_r = K_r V^2 / 2g_s$ maximum value of K,?

(A) Globe valve, wide open

(B) Gate valve, wide open

(C) Tee

(D) Elbow, 90°

63. The equivalent diameter for flow through a rectangular duct of width B and height H is :

(H+B)

64. The specific speed of a centrifugal pump is defined as the speed of a unit:

- (A) Of such size that it delivers unit discharge at unit head
- (B) Of such size that it delivers unit discharge at unit power
- (C) Of unit size with unit discharge at unit head
- (D) Of unit size with unit discharge at unit power

65. For a particle settling in water at its terminal settling velocity, which of the following is true?

(A) buoyancy = weight + drag

(B) weight = buoyancy + drag

(C) drag = buoyancy + weight

(D) drag = weight

	If the discharge of a centrifugal pump is thr	rottled,	the	en its suction lift :	
00.	(A) data insufficient to predict	(B)	re	emains unchanged	
	(C) increases	(D)	de	ecreases	
67.	In distillation column design, the McCabe-l	Thiele p	oro		Ponchon-
	Savarit procedure is needed when:			" H luna A, So, elemen	
	(A) saturated feed is not used			IN DEEM + E.	
	(B) an azeotrope forms (C) the latent heats of vapourisation of the more (D) a total condenser is used				
68.	Two monomers M1 and M2 have reactivity roof the polymer produced from an equimola (A) -M1M2M1M2M1M2M1M2- (B) -M1M1M1M1M2M2M2M2-	r mixu	ire	of the two monomers	structure e:
	(C) -MIM2M2M1M1M1M2M1M2M2M1M	/12- (rai	nde	om, "coin toss" statistics)	
	(D) -M1M1M1M1- and -M2M2M2M2- (h	omopol	lym	ners)	
69.	Consider a homogeneous reaction of	of the	ty	$pe A \xrightarrow{k_1 \text{(1st order)}} R$	and also
	A (2nd order) S. R is the desired product and its concentration is to be maximized by selection of a proper reactor. Which reactor system will you choose in order to get the highest				
	selection of a proper reactor. Which reactor	system	wi	ll you choose in order to get t	ne nignest
	R-concentration (under otherwise uniform	condit	tion	ns) ?	
	(A) Batch reactor	(B)]	PFR	
	(C) Single CSTR	(D))]	Five CSTRs in series	
70	. For irreversible elementary reactions in pa	arallel			
70	$A \xrightarrow{k_1} R; A \xrightarrow{k_2} S$				
	The rate of disappearance of reactant A is	given l	by :	:	
		(P	5)	$(k_1 + k_2) C_A$	
	$(A) (k_1 - k_2) C_A$			k, C,	
	(C) $\frac{1}{2} (k_1 + k_2) C_A$			200	77774200
71	. Which of the following polymers would	you ex	pe	ct to have the best barrier	properties a heverage
	(i.e., provide the best barrier to diffusion of container)?	a gas ar	nd	nence prove most effective as	a sorteng
	(A) Atactic polystyrene				
	(B) A random ethylene/propylene copolym	er (50/5	(0)	composition	1
	(C) Low density polyethylene				
	(D) High density polyethylene				
М	Tech. (Polymer)/BGI-31189-A	[13]			[Turn over
503		11911			

72. The vapour pressure of toluene is 6.811 kPa at 310 K and 24.15 kPa at 340 K. Assuming that the variation of the vapour pressure p with temperature T may be described by the expression

log(p) = A - B/T p is in kPa What are the values of A and B?

(A)
$$A = 7.059$$
, $B = 1930$ K

(C)
$$A = 6.971$$
, $B = 7780$ K

(B)
$$A = 5.307$$
, $B = 1930$ K

73. Stereoregular polymers are:

- (A) Isotactic, syndiotactic, atactic
- (C) Addition and condensation

(B) Natural and synthetic

(D) Elastomers, plastics and fibres

74. Creep strength is:

- (A) another name of tensile strength
- (B) another name of yield strength
- (C) time-dependent strain occurring under stress
- (D) yield strength at elevated temperature, greater than 1000°C

75. Which of the following polymers would you expect to be most suitable for the production of a rubber car bumper guard?

- (A) Atactic polystyrene (Tg ~ 100°C)
- (B) A random ethylene/propylene copolymer (50/50 composition) Tg ~ 40°C
- (C) Low density polyethylene
- (D) High density polyethylene