CET-2015

Sr. No.: 114345

Booklet Series Code : A

The state of the s	se consult your Admit Card / Roll No. S wer Sheet.	Slip before filling your Roll Number on the Test Booklet and
Roll No.	In Figures	In Words
O.M.R. Ansv	ver Sheet Serial No. Signature of th	e Candidate :

Subject: PHYSICS

Time: 70 minutes Number of Questions: 60 Maximum Marks: 120
DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS

- Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point / Black Gel pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. To open the Question Booklet remove the staple(s) gently when asked to do so.
- Please check that this Question Booklet contains 60 questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of test.
- Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point / Black Gel pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
- Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used.
- 12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- 13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so, would be expelled from the examination.
- 15. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

Fundamental Constants

Charge of electron, -e = -1.6×10 19C

Planck constant, h = 6.63×10-34 Js.

Speed of light, c = 3.0×108 m/s

$$\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \,\text{Nm}^2\text{C}^{-2}$$

- 1. Time period of oscillation, T, of an object is related to density of the medium 'd', static pressure 'P' and energy 'E' via relation T = PadbEc. The value of 'c' is:
 - (A) 1/3

(B) -5/6

(C) 1/2

- (D) 0
- 2. The number of bacteria grows exponentially with a doubling time of one minute. One bacterium is put in a bottle at 10.00 A.M. and the growth continues steadily until the bottle become full at 11.00 A.M. When does the bottle become half full?
 - (A) 10.02 A.M.

(B) 10.30 A.M.

(C) 10.24 A.M.

- (D) 10.59 A.M.
- 3. Young's Modulus of a material is 29×10^{10} N/m². What is its value in CGS units? (Dyne is the CGS unit of Force):
 - (A) 29 × 1010 Dyne/cm2

(B) 29 × 1011 Dyne/cm2

(C) 29 × 1012 Dyne/cm2

- (D) 29 × 109 Dyne/cm²
- 4. A particle hanging from a spring stretches it by 1 cm at Earth's surface. How much will the same particle stretch the spring at a place 800 km above the Earth's surface? Radius of Earth = 6400 km:
 - (A) 5.12 cm

(B) 0.79 cm

(C) 0.125 cm

- (D) 8 cm
- 5. The acceleration of a particle, starting from rest, varies with time according to the relation $a = -B\omega^2 \sin \omega t$. The displacement of the particle at time t will be:
 - (A) B sin wt

(B) B ω cos ωt

(C) B ω sin ωt

(D) $B(\omega^2 \sin \omega t) t^2$

6.	The moment of Inertia of a solid	cylinder of Mass 'M', length 'l' and radius 'R' rotating
	along its geometrical axis is :	
	(A) M R ² /2	(B) $M(R^2/2 + \ell^2/12)$
	(C) $M(R^2/4 + \ell^2/12)$	(D) M R ²
7.	A uniform sphere of mass 'M' ro	lls without slipping on a plane surface, so that its centr
	moves at a speed 'v'. The kinetic	energy of the body is :
	(A) M v ²	(B) $(7/10) \text{ M } \text{v}^2$
	(C) $(3/5) \text{ M } \text{v}^2$	(D) $(1/2) \text{ M } \text{v}^2$
8.	Two particles of equal mass go are	ound a circle of radius R under the action of their mutua
	gravitational attraction. The speed	I 'v' of each particle is :
	(A) (GM/4R) 1/2	(B) (GM/R) 1/2
	(C) (GM/2R) 1/2	(D) Zero
9.	A ball is thrown from a field with	a speed of U at an angle θ with the horizontal. Neglect ai
	resistance. The relation between tin	ne of flight (t_i) and time taken for the ball to reach maximum
	height (t _m) is:	
	(A) t _r < t _m	(B) $t_i = t_m$
	(C) $t_{\rm f} = 2 t_{\rm m}$	(D) $t_r > t_m$
10.	The value of 'p' for which the v	ectors $2\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + p\hat{j} + 5\hat{k}$ (\hat{i} , \hat{j} , \hat{k} are unit vectors) are
	coplanar is:	
	(A) 0	(B) -4
	(C) 4	(D) 1

11. A force, $2+3x+4x^2$ acts on a particle moving along x-direction at an angle of $\cos^{-1}x$. The work done by this force for the movement of the particle from x=1 to x=2 is :

(A) 0

(B) 5

(C) 20

(D) 25

12.	A STATE OF THE PARTY OF THE PAR	sits at rest on a frictionless horizontal surface. When spring						
	releases, the toy breaks into 3 equal piece masses A, B and C which slide along the surface.							
	The piece A moves along negative x-direction at 3 m/s and piece B moves along negative							
	y-direction at 4 m/s. What is the s							
	(A) 7 m/s	(B) 1 m/s						
	(C) 5 m/s	(D) 12 m/s						
13.	If a force F is applied on a particle	and the particle moves with velocity v then power will be :						
	(A) Fv	(B) F/v						
	(C) v/F	(D) Fv ²						
14.	If radius of earth shrinks by 1% :	nd its mass remains the same, the value of g on shrunken						
	earth's surface will :							
	(A) Increase by 2%	(B) Increase by 1%						
	(C) Decrease by 1%	(D) Decrease by 2%						
15.	We know that the value of accelera	tion due to gravity 'g' decreases with height (h << R) above						
	the earth's surface and also with depth 'd' below the surface of earth. Consider the earth to be							
	of uniform density of radius R. The	relation between h and d where (Δg), then the reduction in						
	the value of gravity, becomes sam							
	(A) $d = 2 h$	(B) d = h						
	(C) h = 2d	(D) $h = d^2$						
16.	Which of the following statements	is wrong for the bulk property of matter?						
	(A) Copper is more elastic than rubb	er						
	(B) The Young's modulus of a perfect rigid body is infinite							
	(C) The maximum load that can be supported by a wire gets doubled by doubling its radius							
	(D) The lower bulk modulus of the g	ases makes them more compressible than liquids						
17.	Determine the approximate force	exerted on the hatch of a submarine that is operational at						
	a depth of 100 m in sea. A sea level atmospheric pressure is maintained in the crew compartment.							
	The hatch has an area of 1 m2, Ass	ume the density of water to be 103 kg/m3;						
	(A) 8.8 × 10 ⁵ N	(B) 9.8 × 10 ⁵ N						
	(C) 5.4 × 10 ⁵ N	(D) None of the above						

	liqu	nd;				
	(A)	Surface tension nev	er acts within the liquid interior	S		
	(B)	The magnitude of t	he surface tension is equal to th	es	surface energy	
	(C)	The angle of contact capillary	ct between the liquid and solid	ns	side a capillary depends upon the	radius of
	(D)	Liquid bubble has t	twice the excess pressure comp	ar	red to liquid drop	
20.	A 1	00 kg iron slab at 7	00°C in an industry acciden	ta	lly comes in contact with 25 l	eg water at
	100	°C. Estimate the ap	proximate amount of steam	th	nat will be produced. The spec	ific heat of
	iron	i is 0.11 cal./g °C ai	nd the latent heat of vaporiz	at	ion of water is 540 cal./g. :	
	(A)	15.6 kg	(I	3)	18.8 kg	
	(C)	12.2 kg	(I)))	25.0 kg	
21.	Ide	ntify the statement	that is incorrect regarding t	he	nature of a perfect blackbody	radiator:
	(A)	The body is capable	e of absorbing or emitting radia	tic	on at any wavelength	
	(B)	An increase in temp	perature results in higher emissi	on	s at lower wavelength	
	(C)	The body at high ten	mperature cumulatively emits m	or	e radiation at higher wavelength	compared to
		a body at low temp	erature			
	(D)	The perfect condition	on for the blackbody emission	do	es not hold at low temperatures.	
22.	Fin	d the total power p	produced in terms of radiat	io	n by a forest fire with a temp	erature of
	727	°C, and spread ove	er an area of 100 square met	er	'S :	
	(A)	1.58 ×10 ⁵ W	(E	3)	5.67 ×106 W	
	(C)	5.67 ×10 ⁴ W	(I))	1.58 ×106 W	
23.	Esti	mate the amount of	f work done by an isotherma	l e	xpansion of an ideal gas at a te	mperature
	T, f	rom a state of initia	al pressure P, to final pressu	re	P ₂ :	
	(A)	$nRT \ln (P_1/P_2)$	(E	()	$nRT \ell n (P_2/P_1)$	
	(C)	$n RT (P_2/P_1)$	I)))	Zero	
		000000				-
Phys	ics/BF	H-30851-A	6			

18. Find the minimum average velocity of water flow through a pipe of diameter 1 cm so that the

19. Identify the statement that does not describe the general nature of the surface tension of a

103 kg/m3, respectively:

(A) 0.3 m/s

(C) 0.25 m/s

flow is definitely turbulent. The viscosity and density of water can be taken as $10^{-3}\,\mathrm{N}\,\mathrm{s/m^2}$ and

(B) 0.2 m/s

(D) None of the above

- 24. Estimate the approximate percentage efficiency of a Carnot engine that doubles its volume during an adiabatic expansion. C_p can be taken as 1.5 times the value of C_v for the mixture of gas within the engine:
 - (A) 49 %

(B) 39 %

(C) 69 %

- (D) 29 %
- 25. Which of the following statements is thermodynamically wrong?
 - (A) Difference of C_p and C_v represents the work done in the expansion of gas
 - (B) For a fixed amount of volume change and initiating from identical P, the work done by isothermal expansion is less than the adiabatic expansion
 - (C) Heat can be added to a system without increasing its temperature
 - (D) An isochoric process raises only the internal energy of a system
- 26. The rms velocity of gas molecules in a container can be doubled by :
 - (A) Lowering the density by a factor of 2 at constant pressure
 - (B) Raising the pressure by a factor of 4 at constant density
 - (C) Raising alone the temperature by a factor of 2
 - (D) Removing half of the gas from the cylinder
- 27. Which of the following will closely describe the nature of gas with a value of C, ~ 6 cal/mol°C?
 - (A) An ideal monoatomic gas
 - (B) An ideal diatomic gas
 - (C) An ideal polyatomic gas
 - (D) A mixture of ideal monoatomic gas with an ideal diatomic gas with rigid rotator
- 28. The gas molecules inside a container are colliding at a rate of one billion times a second.

 How can the collision rate be increased?
 - (A) Leaking a substantial fraction of gas from the container
 - (B) Increasing the volume of the container
 - (C) Reducing the temperature at constant pressure
 - (D) None of the above
- 29. Which of the following statements does not correctly describe the nature regarding simple pendulum, and Simple Harmonic Motion (SHM), in general?
 - (A) The particles executing SHM acquire maximum velocity at mean position
 - (B) The acceleration is directly proportional to displacement and is always directed away from the fixed position
 - (C) The simple pendulum condition is satisfied only for small angular separations of the bob from its mean position
 - (D) Doubling the length of a simple pendulum increases its time period by approximately 41.4 %

		$y_1 = A \sin(kx - \omega t)$ and	$y_{i} = A \sin(kx - \omega t + \phi)$	
	Wh	ich of the following stater		ne resultant wave ?
		$I_{max} = 4 I_0$ is the intensity of		
		$I_{min} = 0$		
		The phase angle of the res	sultant wave is $\pi/4$ if $\phi = \pi$	74
				amplitude of the single wave
31.	Age	old foil weighing 60 mg/c	em² is places on a horize	ontal charged plate. What would be the
		sity of charge so that the		
		1.20 ×10 ⁻⁶ C/m ²		1.02 ×10 6 C/m ²
	(C)	2.02 ×10 ° C/m ²	(D)	2.20 ×10 ⁻⁶ C/m ²
32.	A se	olid sphere of radius R	has a charge Q distrib	uted in its volume with charge density
	p=1	k r where k and a are con	istants and r is the dista	nce from its center. If the electric field at
	r = 1	R/2 is 1/16 times that at r	= R, find value of a.	
	(A)	2	(B)	1
	(C)	3	(D)	4
33.	The	Electric field at a point i	s:	
	(A)	Always continuous		
	(B)	Continuous if there are no	charge at that point	
	(C)	Discontinuous only if there	e is a negative charge at tha	at point
	(D)	Continuous if there is a cha	arge at that point	
34.	Two	resistors 400 Ω and 800	Ω are connected in ser	ries with a 6 V battery. What will be the
		ling in the ammeter of 10		
	(A)	2.48 × 10 ⁻³ A	(B)	3.48 × 10 ⁻³ A
	(C)	$2.96 \times 10^{-3} \text{ A}$	(D)	$4.96 \times 10^{-3} \text{ A}$
35.	Ap	otentiometer wire of leng	th I m has a resistance	of 100 Ω . It is connected in series with a
				le resistance. A source of emf 10 mV is
	bala	need against a length of	40 cm of the potentiom	eter wire. What is the value of external
		stance?		
	(A)	790 Ω	(B)	1580 Ω
	1	690 Ω	(D)	1280 Ω
			1-7	450.000
36.	The	maximum power drawn	out of the cell from a so	urce is given by :
		ε ² /2r		ε²/4r
	1000	c2/r		c2/3r

30. Consider the superposition of two harmonic waves.

37.	A closed circuit is in the form of a regular hexagon of a side a. If the circuit carries a current I, what is magnetic induction at the centre of the hexagon?						
	(A) μ ₀ I/πa	(B) $\sqrt{2} \mu_0 I$	$/\pi a$				
	(C) Zero	(D) $\sqrt{3} \mu_0 I$	/πα				
38.		clocity of 4 × 10 ⁵ m/s enters a mag					
	(A) 1.2 cm	(B) 2.1 cm					
	(C) 2.4 cm	(D) 4.2 cm					
39.	A paramagnetic sample show	vs a net magnetization of 8 A/m who	en placed in an external magnetic				
	field of 0.6T at a temperatu	re of 4 K. When the same sample	is placed in an external field of				
	0.2T at a temperature of 16	K, the magnetization will be:					
	(A) $\frac{32}{3}$ A/m	(B) $\frac{2}{3}$ A/m					
	(C) 6A/m	(D) 2.4 A/m					
40.		arged and then discharged through e of the capacitor will fall to 36.8%					
	(A) 2 s	(B) 1.5 s	+				
	(C) 1 s	(D) 0.5 s					
41.	The mutual inductance M ₁₂ (A) Increases when they are b (B) Depends on the current pa (C) Increases when one of the (D) Is the same as M ₂₁ of coil	assing through the coil em is rotated about an axis					
42.	A variable frequency AC ger	nerator with E ₀ = 24 V is connected	l across a 7.96 × 10 ⁻⁹ F capacitor.				
	At what frequency should th	he generator be operated to provi	de a maximum current of 6 A?				
	(A) 2.5 MHz	(B) 5 MHz					
	(C) 10 MHz	(D) 15 MHz					
43.	An electromagnetic wave of with permittivity $\varepsilon_r = 4$ then	f frequency 3 MHz passes from v	acuum into a dielectric medium				
	(A) The wavelength and frequency both remain unchanged						
	(B) The wavelength is doubled and frequency remains unchanged						
	(C) The wavelength is double	ed and frequency becomes half					
	The state of the s	d frequency remains unchanged					
Phys	ics/BFH-30851-A	9	[Turn over				

44.	The	ratio of amplitude of magnetic	field to the amplitu	ide of electric field for an electromagnet						
	way	wave propagating in vacuum is equal to:								
	(A)	The speed of light in vacuum								
	(B)	(B) Reciprocal of speed of light in vacuum								
	(C) The ratio of magnetic permeability to the electric susceptibility of vacuum									
	(D)	Unity								
45.	For	a wave propagating in a medi	um, identify the pr	operty that is independent of the other						
	(A)	Velocity	(B)	Wavelength						
	(C)	Frequency	(D)	All these depend on each other						
46.	The	distance of normal vision is	25 cm. The specta	cles of a person having least distance						
	dist	inct vision of 50 cm should be								
	(A)	Convex with focal length 25 cm	(B)	Concave with focal length 25 cm						
	(C)	Convex with focal length 50 cm	(D)	Concave with focal length 50 cm						
47.	Afi	sh is 2.00 m below the surface of	of a smooth lake wit	th the index of refraction for water bein						
	1.33. The angle above the horizontal at which it must look at to see the light from a small fir									
	burning at the water's edge 100 m away is:									
	(A)	90°-cos¹ (1/1.33)								
	(B)	90°-sin-1 (1/1.33)								
	(C)	$\sin^{-1}(1/1.33) - \cos^{-1}(1/1.33)$								
	(D)	The fish will not be able to see the	he fire at any angle							
48.	The	colour of sky as seen from the	e moon, where the	re is no atmosphere, is :						
	(A)	White	(B)	Blue						
	(C)	Black	(D)	Reddish						
49.	The	geometrical shape of the wav	efront of a light so	urce in the form of a narrow slit is :						
	(A)	Plane	(B)	Parabolic						
	(C)	Spherical	(D)	Cylindrical						

- 50. In a Young's double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case:
 - (A) There shall be no interference fringes
 - (B) There shall be alternate interference patterns of red and blue
 - (C) There shall be an interference pattern for red mixing with one for blue
 - (D) There shall be an interference pattern for red distinct from one for blue
- 51. We wish to use a glass plate with index of refraction 1.57 to polarise light in air. For the light reflected by the glass to be fully polarized, the angles of incidence and refraction will be, respectively:
 - (A) tan (1/1.57), 90°-tan (1/1.57)
- (B) 90°-tan (1/1.57), tan (1/1.57)

(C) tan (1.57), 90°-tan (1.57)

- (D) 90° tan 1(1.57), tan 1(1.57)
- 52. Light from the sun arrives at the earth, an average of 1.5×10¹¹ m away, at the rate of 1.4 × 10³ W/m² of area perpendicular to the direction of the light. Assuming that sunlight is monochromatic with a frequency of 5 × 10¹⁴ Hz, the number of photons falling per second on each square meter of the earth's surface directly facing the sun is:
 - (A) 8.4 × 106 photons/m2

(B) 3.0 × 1018 photons/m²

(C) 6.7 × 1020 photons/m2

- (D) 4.2 × 10²¹ photons/m²
- 53. The threshold wavelength for photoelectric emission in tungsten is 230 nm. In order for electrons with a maximum energy of 1.5 eV to be ejected, the wavelength of light used must be:
 - (A) 110 nm

(B) 180 nm

(C) 276 nm

- (D) 326 nm
- 54. The distance of closest approach of 1.00 MeV protons incident on gold (Z = 79) nuclei will be :
 - (A) 1.14 × 10⁻¹³ m

(B) 6.28 × 10⁻¹³ m

(C) 1.44 × 10-15 m

- (D) 8.99 × 10⁻¹⁵ m
- 55. The speed of an electron in the nth orbit of a hydrogen atom according to the Bohr model is :
 - (A) $e^2n/2\varepsilon_0h$

(B) $e^2n^2/2\varepsilon_0h$

(C) e2/2ε,hn

(D) e2/2ε,hn2

	(A)	24.1 hours	(B)	30.4 hours
	(C)	34.8 hours	(D)	43.8 hours
57.	The	alternating current ga	in of a transistor in com	mon base arrangement is 0.98. Find the
	cha	nge in base current corr	responding to a change of	5,0 MA in emitter current:
	(A)	1 mA	(B)	5 mA
	(C)	0.1 mA	(D)	0.5 mA
58.	For	a transistor action, whi	ch of the following staten	nents is correct ?
	(A)	Collector current is equa	l to the sum of the base curr	ent and emitter current
	(B)	Input resistance depends	on the current I in the trans	sistor
	(C)	The emitter junction is re	eversed biased and collector	junction is forward biased
	(D)	Both the emitter junction	as well as collector junction	n is forward biased
59.	The	wavelength of electron	agnetic waves employed	for space communication lie in the range
	of:			
	(A)	1 mm to 30 m	(B)	1 mm to 300 m
	(C)	1 mm to 3 Km	(D)	1 mm to 30 Km
60.	AT	V tower has a height of 7	5 m. What is the maximum	area upto which this TV communication
	can	be possible?		
	(A)	6036 Km ²	(B)	3017 Km ³
	(C)	4528 Km ²	(D)	1509 Km ²
		4		

56. The half-life of 24Na is 15.0 hours. For 80 percent of a sample of this nuclide to decay, it will

take (you may use: In 2 = 0.693, In 8 = 2.079, In 10 = 2.303)

Panjab University, Chandigarh CET(UG)-2015 FINAL ANSWERS / KEY

Subject: PHYSICS

Booklet Series Code: A

1 A	2 D	3 B	4 B	5 A	6 A	7 B	8 A	9 C	10 B
11	12	13	14	15	16	17	18	19	20
D	С	В	Α	Α	С	Α	Α	С	С
21	22	23	24	25	26	27	28	29	30
D	В	Α	D	В	В	С	С	В	С
31	32	33	34	35	36	37	38	39	40
В	С	В	D	Α	В	D	Α	В	С
41	42	43	44	45	46	47	48	49	50
Α	В	В	В	С	С	В	С	D	Α
51	52	53	54	55	56	57	58	59	60
С	D	В	Α	С	С	С	В	D	В

Note: An 'X' in the key indicates that either the question is ambiguous or it has printing mistake. All candidates will be given credit for this question.